【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問(wèn)卷調(diào)查,F(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類(lèi):A類(lèi)(不參加課外閱讀),B類(lèi)(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過(guò)3小時(shí)),C類(lèi)(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過(guò)3小時(shí))。調(diào)查結(jié)果如下表:
A類(lèi) | B類(lèi) | C類(lèi) | |
男生 | x | 5 | 3 |
女生 | y | 3 | 3 |
(I)求出表中x,y的值;
(II)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計(jì) | |
不參加課外閱讀 | |||
參加課外閱讀 | |||
總計(jì) |
(III)從抽出的女生中再隨機(jī)抽取3人進(jìn)一步了解情況,記X為抽取的這3名女生中A類(lèi)人數(shù)和C類(lèi)人數(shù)差的絕對(duì)值,求X的數(shù)學(xué)期望。
附:K2=)
P(K2≥k0) | 0.10 | 0.01 | |
k0 | 2.706 | 3.841 | 6.635 |
【答案】(1) ; (2)列聯(lián)表見(jiàn)解析,沒(méi)有90%的把握認(rèn)為“參加閱讀與否”與性別有關(guān); (3).
【解析】
(1)設(shè)被抽取的20人中,男、女生人數(shù)分別為;根據(jù)分層抽樣的原理,求得,進(jìn)而求得x,y的值;
(2)根據(jù)題意填寫(xiě)列聯(lián)表,計(jì)算K2,對(duì)照臨界值得出結(jié)論
(3)X可能的取值為0,1,2,3,根據(jù)組合數(shù)公式和古典概型概率公式計(jì)算概率,再得出X的數(shù)學(xué)期望.
(1)設(shè)抽取的20人中,男、女生人數(shù)分別為,則,
所以,
.
(2)列聯(lián)表如下:
男生 | 女生 | 總計(jì) | |
不參加課外閱讀 | 4 | 2 | 6 |
參加課外閱讀 | 8 | 6 | 14 |
總計(jì) | 12 | 8 | 20 |
的觀測(cè)值,
所以沒(méi)有90%的把握認(rèn)為“參加閱讀與否”與性別有關(guān).
(3)的可能取值為0,1,2,3,
則,
,
,
,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的偶函數(shù),對(duì)任意都有,當(dāng),且時(shí),,給出如下命題:
①;
②直線是函數(shù)的圖象的一條對(duì)稱(chēng)軸;
③函數(shù)在上為增函數(shù);
④函數(shù)在上有四個(gè)零點(diǎn).
其中所有正確命題的序號(hào)為( )
A. ①② B. ②④ C. ①②③ D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某地某年月平均氣溫(華氏度):
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
平均氣溫 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
以月份為x軸(月份),以平均氣溫為y軸.
(1)用正弦曲線去擬合這些數(shù)據(jù);
(2)估計(jì)這個(gè)正弦曲線的周期T和振幅A;
(3)下面三個(gè)函數(shù)模型中,哪一個(gè)最適合這些數(shù)據(jù)?
①;②;③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶(hù)只需以運(yùn)動(dòng)手環(huán)或手機(jī)協(xié)處理器的運(yùn)動(dòng)數(shù)據(jù)為介,然后關(guān)注該公眾號(hào),就能看見(jiàn)自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn).現(xiàn)隨機(jī)選取朋友圈中的50人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 10000以上 | ||||
男生人數(shù)/人 | 1 | 2 | 7 | 15 | 5 |
女性人數(shù)/人 | 0 | 3 | 7 | 9 | 1 |
規(guī)定:人一天行走的步數(shù)超過(guò)8000步時(shí)被系統(tǒng)評(píng)定為“積極性”,否則為“懈怠性”.
(1)填寫(xiě)下面列聯(lián)表(單位:人),并根據(jù)列表判斷是否有90%的把握認(rèn)為“評(píng)定類(lèi)型與性別有關(guān)”;
積極性 | 懈怠性 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)為了進(jìn)一步了解“懈怠性”人群中每個(gè)人的生活習(xí)慣,從步行數(shù)在的人群中再隨機(jī)抽取3人,求選中的人中男性人數(shù)超過(guò)女性人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)若直線與圓交于兩點(diǎn),是圓上不同于兩點(diǎn)的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的右焦點(diǎn),點(diǎn)在上,且軸.
(1)求的方程;
(2)過(guò)的直線交于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為,,且以線段為直徑的圓與直線相切,橢圓截直線所得線段的長(zhǎng)度為1.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若整數(shù)、既不互素,又不存在整除關(guān)系,則稱(chēng)、為一個(gè)“聯(lián)盟”數(shù)對(duì).設(shè)為集的元子集,且中任兩數(shù)均為聯(lián)盟數(shù)對(duì).求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)將某校高二年級(jí)某班的學(xué)業(yè)水平測(cè)試數(shù)學(xué)成績(jī)分為、、、、五組,繪制而成的莖葉圖、頻率分布直方圖如下,由于工作疏忽,莖葉圖有部分被損壞,頻率分布直方圖也不完整,請(qǐng)據(jù)此解答如下問(wèn)題:(注:該班同學(xué)數(shù)學(xué)成績(jī)均在區(qū)間內(nèi))
(1)將頻率分布直方圖補(bǔ)充完整.
(2)該班希望組建兩個(gè)數(shù)學(xué)學(xué)習(xí)互助小組,班上數(shù)學(xué)成績(jī)最好的兩位同學(xué)分別擔(dān)任兩組組長(zhǎng),將此次成績(jī)低于60分的同學(xué)作為組員平均分到兩組,即每組有一名組長(zhǎng)和兩名成績(jī)低60分的組員,求此次考試成績(jī)?yōu)?/span>52分、54分和98分的三名同學(xué)分到同一組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com