【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

【答案】A

【解析】由二次方程的解法易得(xa)(xb)=0的兩根為ab;根據(jù)函數(shù)零點(diǎn)與方程的根的關(guān)系,可得f(x)=(xa)(xb)的零點(diǎn)就是a,b,即函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo);觀察f(x)=(xa)(xb)的圖象,可得其與x軸的兩個(gè)交點(diǎn)分別在區(qū)間(-∞,-1)(0,1)上,又由a>b,可得b<-1,0<a<1.對(duì)函數(shù)g(x)=axb,由0<a<1可得其是減函數(shù),又由b<-1可得其與y軸交點(diǎn)的坐標(biāo)在x軸的下方;分析選項(xiàng)可得A符合這兩點(diǎn),B,C,D均不滿足.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)滿足,當(dāng)時(shí)總有 ,若,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資人欲將5百萬(wàn)元獎(jiǎng)金投入甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測(cè),甲、乙兩種理財(cái)產(chǎn)品的收益與投入獎(jiǎng)金的關(guān)系式分別為,其中為常數(shù)且.設(shè)對(duì)乙種產(chǎn)品投入獎(jiǎng)金百萬(wàn)元,其中

1)當(dāng)時(shí),如何進(jìn)行投資才能使得總收益最大;(總收益

2)銀行為了吸儲(chǔ),考慮到投資人的收益,無(wú)論投資人獎(jiǎng)金如何分配,要使得總收益不低于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店統(tǒng)計(jì)了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店

第一天售出但第二天未售出的商品有______種;

這三天售出的商品最少有_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿足,若函數(shù)圖象的交點(diǎn)為,則交點(diǎn)的所有橫坐標(biāo)和縱坐標(biāo)之和為( )

A. 0 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)y=f(x)的圖象關(guān)于點(diǎn) 成中心對(duì)稱,對(duì)任意的實(shí)數(shù)x都有f(x)=﹣f(x+ ),且f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+f(3)+…+f(2014)的值為(
A.2
B.1
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,

1)若為等邊三角形,且 的中點(diǎn),求

2)若, , ,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣|x|+2a﹣1(a為實(shí)常數(shù)).

(1)若a=1,求f(x)=3的解;

(2)求f(x)在區(qū)間[1,2]的最小值為g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實(shí)數(shù)a的取值范圍為(
A.[﹣ ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

同步練習(xí)冊(cè)答案