【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍.

【答案】(1)見解析;(2) .

【解析】試題分析:1)先求出函數(shù)的導數(shù),分類討論根據(jù)導數(shù)的正負即可得出函數(shù)的單調(diào)性;2)法一:對任意,都有恒成立等價于上恒成立, 上恒成立,,利用導數(shù)研究函數(shù)的單調(diào)性,即可求得從而可得實數(shù)的取值范圍;法二要使恒成立,只需,進行分類討論利用導數(shù)研究函數(shù)的單調(diào)性,求出,即可實數(shù)的取值范圍.

試題解析:1)由題知: ,

, 時恒成立

上是增函數(shù).

, ,

,得 ;令, .

上為增函數(shù),在上為減函數(shù).

2)法一:由題知: 上恒成立, 上恒成立.

,所以

;令.

上單調(diào)遞增,在上單調(diào)遞減.

,

.

法二:要使恒成立,只需,

時, 上單調(diào)遞增.

,,這與矛盾,此時不成立.

,

i時, 上單調(diào)遞增,

,即,這與矛盾,此時不成立.

ii時, 上單調(diào)遞增,在上單調(diào)遞減 .

解得.

,

iii 時, 遞減,則,

綜上所述可得: .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次環(huán)保知識競賽,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

1)填充頻率分布表的空格(將答案直接填在表格內(nèi));

2)補全頻數(shù)分布直方圖;

3)若成績在75.585的學生為二等獎,問獲得二等獎的學生約為多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設動點的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ) 是曲線上的動點,且直線經(jīng)過定點,問在軸上是否存在定點,使得,若存在,請求出定點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從一批草莓中,隨機抽取個,其重量(單位:克)的頻率分布表如下:

分組(重量)





頻數(shù)(個)





已知從個草莓中隨機抽取一個,抽到重量在的草莓的概率為

1)求出,的值;

2)用分層抽樣的方法從重量在的草莓中共抽取個,再從這個草莓中任取個,求重量在中各有個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求直線的極坐標方程和曲線的直角坐標方程;

(Ⅱ)已知,直線與曲線交于, 兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的方程為,直線與曲線交于兩點.

(1)求直線的標準參數(shù)方程;

(2)求的長;

(3)以為極點,軸的正半軸為極軸建立極坐標系,設點的極坐標為;求點到線段中點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過圓軸正半軸的交點A作圓O的切線M上任意一點,過M作圓O的另一條切線,切點為Q.當點M在直線上運動時,△MAQ的垂心的軌跡方程為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村電費收取有以下兩種方案供農(nóng)戶選擇:方案一:每戶每月收管理費2元,月用電不超過30度時,每度0.5;超過30度時,超過部分按每度0.6元收取. 方案二:不收管理費,每度0.58.

(1)求方案一收費元與用電量x ()之間的函數(shù)關系;

(2)老王家九月份按方案一交費35元,問老王家該月用電多少度?

(3)老王家月用電最在什么范圍時,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,直線交橢圓兩點,橢圓的右頂點為,且滿足.

(1)求橢圓的方程;

(2)若直線與橢圓交于不同兩點、,且定點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案