函數(shù)y=
1
x
的定義域是
 
,值域是
 
考點(diǎn):冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,結(jié)合分?jǐn)?shù)函數(shù)的圖象和性質(zhì)即可得到結(jié)論.
解答: 解:由分式函數(shù)的性質(zhì)可知,函數(shù)的定義域?yàn)閧x|x≠0},值域?yàn)閧y|y≠0},
故答案為:{x|x≠0};{y|y≠0},
點(diǎn)評(píng):本題主要考查函數(shù)的定義域和值域的求解,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-ax-x2,若對(duì)于?x∈[a,a+1],都有f(x)>0成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)y=
2x+3,x≤0
x+3,0<x≤1
-x+5,x>1
的圖象,并指出函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在區(qū)間(-a,a)內(nèi)有定義,若當(dāng)x∈(-a,a)時(shí),恒有|f(x)|≤x2,則x=0必是f(x)的( 。
A、間斷點(diǎn)
B、連續(xù)而不可導(dǎo)點(diǎn)
C、可導(dǎo)點(diǎn),且f′(0)=0
D、可導(dǎo)點(diǎn),且f′(0)≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競賽”,共有900名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組頻數(shù)頻率
50.5~60.540.08
60.5~70.50.16
70.5~80.510
80.5~90.5160.32
90.5~100.5
合計(jì)50
(1)請(qǐng)?zhí)畛漕l率分布表的空格,并補(bǔ)全頻率分布直方圖;
(2)若成績在75.5~85.5分的學(xué)生為二等獎(jiǎng),請(qǐng)你估計(jì)獲得二等獎(jiǎng)的人數(shù);
(3)用分層抽樣的方法從80分以上(不包括80分)的學(xué)生中抽取了7人進(jìn)行試卷分析,再從這7人中選取2人進(jìn)行經(jīng)驗(yàn)匯報(bào),求選出的2人至少有1人在[90.5,100.5]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b,c是角A,B,C所對(duì)的邊,若sinA+sin(C-B)=sin2B,且
c
a
<cosB,則△ABC的形狀為(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|(x-a),a為實(shí)數(shù).
(1)若g(x)為定義在R的奇函數(shù),當(dāng)x>0時(shí),g(x)=f(x),求g(x)的解析式;
(2)若關(guān)于x的方程f(x)+1=0有3個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使得f(x)在閉區(qū)間[1,2]上的最大值為-4,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn滿足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有
1
a1a3
+
1
a2a4
+
1
a3a5
+…+
1
anan+2
3
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)an=ln[1+n(n+1)],前n項(xiàng)和為Sn,證明不等式:Sn>2n-3.

查看答案和解析>>

同步練習(xí)冊答案