【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都乘以同一個(gè)非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設(shè)有一個(gè)回歸方程,變量x增加1個(gè)單位時(shí),y平均減少5個(gè)單位

C.線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱

D.在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N1σ2)(σ0),則Pξ1)=0.5

【答案】BD

【解析】

A,方差應(yīng)變?yōu)樵瓉淼?/span>a2倍;對B,x增加1個(gè)單位時(shí)計(jì)算y值與原y值比較可得結(jié)論;線性相關(guān)系數(shù)|r|越大,兩個(gè)變量的線性相關(guān)性越強(qiáng),反之,線性相關(guān)性越弱;根據(jù)正態(tài)曲線關(guān)于x=1對稱即可判斷.

對于選項(xiàng)A:將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都乘以同一個(gè)非零常數(shù)a后,方差變?yōu)樵瓉淼?/span>a2倍,故錯(cuò)誤.

對于選項(xiàng)B:若有一個(gè)回歸方程,變量x增加1個(gè)單位時(shí),y平均減少5個(gè)單位,正確.

對于選項(xiàng)C:線性相關(guān)系數(shù)|r|越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱,錯(cuò)誤.

對于選項(xiàng)D:在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N1,σ2)(σ0),由于正態(tài)曲線關(guān)于x=1對稱,則Pξ1)=0.5,正確.

故選:BD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有以下命題:

是奇函數(shù);

單調(diào)遞增函數(shù);

③方程僅有1個(gè)實(shí)數(shù)根;

④如果對任意,則的最大值為2.

則上述命題正確的有_____________.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x,g(x)=2x+a,若x1[,1],x2[2,3],使得f(x1)g(x2),則實(shí)數(shù)a的取值范圍是(  )

A.a≤1B.a≥1C.a≤2D.a≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公司一種產(chǎn)品的日銷售量(單位:百件)關(guān)于日最高氣溫(單位:)的散點(diǎn)圖.

數(shù)據(jù):

13

15

19

20

21

26

28

30

18

36

1)請?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關(guān)性最強(qiáng),并用剩余數(shù)據(jù)求日銷售量關(guān)于日最高氣溫的線性回歸方程;

2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補(bǔ)貼.已知某日該產(chǎn)品的銷售量為53.1,請用(1)中求出的線性回歸方程判斷該公司員工當(dāng)天是否可享受高溫補(bǔ)貼?

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度,某社區(qū)居委會隨機(jī)抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如表:

得分

男性

人數(shù)

40

90

120

130

110

60

30

女性

人數(shù)

20

50

80

110

100

40

20

1)從該社區(qū)隨機(jī)抽取一名居民參與問卷測試,試估計(jì)其得分不低于60分的概率;

2)將居民對垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60分)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對垃圾分類的了解程度”與“性別”有關(guān)?

不太了解

比較了解

合計(jì)

男性

女性

合計(jì)

3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機(jī)抽取3人作為環(huán)保宣傳隊(duì)長,設(shè)3人中男性隊(duì)長的人數(shù)為ξ,求ξ的分布列和期望.

附:,(n=a+b+c+d.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2019的自主招生考試中,考生筆試成績分布在,隨機(jī)抽取200名考生成績作為樣本研究,按照筆試成績分成5組,第1組成績?yōu)?/span>,第2組成績?yōu)?/span>,第3組成績?yōu)?/span>,第4組成績?yōu)?/span>,第5組成績?yōu)?/span>,樣本頻率分布直方圖如下:

1)估計(jì)全體考生成績的中位數(shù);

2)為了能選撥出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第34,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行外語交流面試,求這2名學(xué)生均來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值點(diǎn);

(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型電器企業(yè),為了解組裝車間職工的生活情況,從中隨機(jī)抽取了名職工進(jìn)行測試,得到頻數(shù)分布表如下:

日組裝個(gè)數(shù)

人數(shù)

6

12

34

30

10

8

1)現(xiàn)從參與測試的日組裝個(gè)數(shù)少于的職工中任意選取人,求至少有人日組裝個(gè)數(shù)少于的概率;

2)由頻數(shù)分布表可以認(rèn)為,此次測試得到的日組裝個(gè)數(shù)服從正態(tài)分布近似為這人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).

i)若組裝車間有名職工,求日組裝個(gè)數(shù)超過的職工人數(shù);

ii)為鼓勵職工提高技能,企業(yè)決定對日組裝個(gè)數(shù)超過的職工日工資增加元,若在組裝車間所有職工中任意選取人,求這三人增加的日工資總額的期望.

附:若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

同步練習(xí)冊答案