精英家教網 > 高中數學 > 題目詳情
定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足f(x)≤g(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=lnx,g(x)=1-
1
x

(1)試探求f(x)與g(x)是否存在“左同旁切線”,若存在,請求出左同旁切線方程;若不存在,請說明理由.
(2)設P(x1,f(x1)),Q(x2,f(x2))是函數f(x)圖象上任意兩點,0<x1<x2,且存在實數x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,證明:x1<x3<x2
分析:(1)由題意知f(x)與g(x)有公共點,確定在公共點處的切線方程為y=x-1,再證y=x-1就是左同旁切線方程,即證1-
1
x
≤lnx≤x-1(x>0);
(2)利用反證法進行證明,令x3≤x1,則x3=
x2-x1
ln
x2
x1
x1
,從而可得x2-x1x1ln
x2
x1
x1(
x2
x1
-1)=x2-x1
,由此得證.
解答:解:(1)由題意知f(x)與g(x)有公共點,令其為(x0,y0),則f(x0)=f(x0),f'(x0)=g'(x0),即
1
x0
=
1
x
2
0
lnx0=1-
1
x
2
0
,解得x0=1,y0=1.
所以在公共點處的切線方程為y=x-1.
下證y=x-1就是左同旁切線方程,即證1-
1
x
≤lnx≤x-1(x>0).
先構造函數h(x)=lnx-x+1(x>0),則h'(x)=
1
x
-1=
1-x
x
,
令h'(x)>0可得0<x<1,h'(x)<0可得x<0或x>1,
∴函數在x=1處h(x)取得最大值h(1)=0,所以lnx-x+1≤0,即lnx≤x-1(x>0).(4分)
再構造函數φ(x)=lnx-1+
1
x
(x>0),則φ′(x)=
x-1
x2
,
令φ'(x)>0可得x>1,φ'(x)<0可得x<1,
∴在x=1處φ(x)取得最小值φ(1)=0,所以lnx-1+
1
x
≥0,即lnx≥1-
1
x
(x>0).
故對任意x∈(0,+∞),恒有1-
1
x
≤lnx≤x-1(x>0)成立,即y=x-1就是左同旁切線方程.(6分)
(2)因為f′(x)=
1
x
,所以f′(x3)=
1
x3
=
lnx2-lnx1
x2-x1
=
ln
x2
x1
x2-x1
,所以x3=
x2-x1
ln
x2
x1

令x3≤x1,則x3=
x2-x1
ln
x2
x1
x1

x2-x1x1ln
x2
x1
x1(
x2
x1
-1)=x2-x1
,
顯然自相矛盾,故x1<x3;同理可證x3<x2
故x1<x3<x2.(12分)
點評:本題考查導數知識的運用,考查新定義,考查函數的最值,正確理解新定義是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:已知函數f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數f(x)在[m,n](m<n)上具有“DK”性質.已知f(x)=ax2-|x|+2a-1
(1)若a=1,判斷函數f(x)在[1,2]上是否具有“DK”性質,說明理由.
(2)若f(x)在[1,2]上具有“DK”性質,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:已知函數f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數 f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結合(I)中的結論證明x1<x3<x2

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省云浮市高一(上)12月月考數學試卷(解析版) 題型:填空題

定義運算已知函數f(x)=x2⊕x,求f(2)=   

查看答案和解析>>

科目:高中數學 來源:2011-2012學年河南省豫東、豫北十所名校高三測試理科數學試卷(解析版) 題型:解答題

定義:已知函數f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內的任意實數均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設P(是函數 f(x)圖象上任意兩點,且0<x1<x2,若存在實數x3>0,使得.請結合(I)中的結論證明:

 

查看答案和解析>>

同步練習冊答案