定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點(diǎn)處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:
(Ⅰ)見解析 (Ⅱ)見解析
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,研究函數(shù)的單調(diào)性和最值,以及函數(shù)與不等式的綜合運(yùn)用。
(Ⅰ)要證明結(jié)論即證.
構(gòu)造函數(shù)令,則,分析最值得到結(jié)論。
再令分析最值得到結(jié)論
綜上可知故對任意,恒有成立,即直線是與的“左同旁切線”
(Ⅱ)因?yàn)楦鶕?jù)已知函數(shù),得到導(dǎo)函數(shù),所以,所以.采用作差法,利用(Ⅰ)的結(jié)論因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415175583426959/SYS201208241518308524475697_DA.files/image012.png">得到。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x |
f(x2)-f(x1) |
x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x |
f(x2)-f(x1) |
x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省云浮市高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com