3.已知函數(shù)f(x)滿足f(-x)=-f(x),且f(x+2)=f(x),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(-$\frac{5}{2}$)=(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 根據(jù)題意,求出f(-$\frac{5}{2}$)=-f($\frac{5}{2}$)=-f($\frac{1}{2}$)=-$\frac{1}{2}$.

解答 解:∵函數(shù)f(x)滿足f(-x)=-f(x),∴f(-$\frac{5}{2}$)=-f($\frac{5}{2}$);
又f(x+2)=f(x),∴f($\frac{5}{2}$)=f($\frac{1}{2}$);
當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),
∴f($\frac{1}{2}$)=2×$\frac{1}{2}$(1-$\frac{1}{2}$)=$\frac{1}{2}$;
∴f(-$\frac{5}{2}$)=-f($\frac{5}{2}$)=-f($\frac{1}{2}$)=-$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性與周期性的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,若A1C與平面B1BCC1所成的角為$\frac{π}{6}$,則三棱錐A1-ABC的體積為$\frac{\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖:在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求證:平面ACE⊥平面CDE;
(2)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.不等式$\frac{1}{x}$<1的解集為(1,+∞)∪(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,側(cè)面PAD為等邊三角形,底面ABCD為菱形,且∠DAB=$\frac{π}{3}$.
(I)求證:PB⊥AD;
(Ⅱ)求直線PC與平面PAB所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,-sin$\frac{C}{2}}$),且m和n的夾角為$\frac{π}{3}$.
(1)求角C;
(2)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若復(fù)數(shù)z滿足$\frac{{{{(1-i)}^2}}}{z}$=1+i(i為虛數(shù)單位),則復(fù)數(shù)z位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若命題 p:x∈R,x 2-1>0,則命題 p 的否定是x∈R,x2-1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知圓的方程為x2+y2=1,則點(diǎn)P(3,2)(  )
A.是圓心B.在圓上C.在圓內(nèi)D.在圓外

查看答案和解析>>

同步練習(xí)冊(cè)答案