【題目】已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4 ,求△ABC的面積的最大值.

【答案】
(1)解:∵3bcos A=ccos A+acosC,∴3sinBcos A=sinCcos A+sinAcosC=sin(A+C)=sinB.

sinB≠0,化為:cosA= ,∴sinA= = ,可得tanA= =2


(2)解:32=a2=b2+c2﹣2bccosA≥2bc = bc,可得bc≤24,當(dāng)且僅當(dāng)b=c=2 取等號.

∴SABC= =8

∴當(dāng)且僅當(dāng)b=c=2 時,△ABC的面積的最大值為8


【解析】(1)由3bcos A=ccos A+acosC,可得3sinBcos A=sinCcos A+sinAcosC,化為:3cosA=1.可得sinA= ,可得tanA= .(2)32=a2=b2+c2﹣2bccosA,再利用基本不等式的性質(zhì)可得bc≤24.利用SABC= 即可得出.
【考點(diǎn)精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:8284,84,8686,86,8888,88,88.B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生社團(tuán)心理學(xué)研究小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時,曲線是二次函數(shù)圖象的一部分,當(dāng)時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時學(xué)習(xí)效果最佳.

(1)試求的函數(shù)關(guān)系式;

(2)教師在什么時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x2的圖象在點(diǎn)(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足(
A.0<x0
B. <x0<1
C. <x0
D. <x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實(shí)數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個不同的極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)

(1)求橢圓的方程;

(2)求的取值范圍;

(3)若直線不過點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=|x-a|+x,其中a0

1)當(dāng)a=3時,求不等式fx)≥x+4的解集;

2)若不等式fx)≥x+2a2x[1,3]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案