【題目】甲、乙兩人某次飛鏢游戲中的成績如下:甲:8,6,7,7,8,10,9,8,7,8; 乙:9,10,6,7,9,9,10,8,9,10.其中甲的成績可用如圖(1)所示的打點圖(或點狀圖)表示,每個成績上面的點的個數表示這個成績出現(xiàn)的次數.在圖(2)中作出乙的成績的打點圖,并由圖寫出關于甲、乙成績比較的兩個統(tǒng)計結論.
(1) (2)
科目:高中數學 來源: 題型:
【題目】年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過元(含元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.方案一:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,一次性摸出個球,其中獎規(guī)則為:若摸到個紅球,享受免單優(yōu)惠;若摸出個紅球則打折,若摸出個紅球,則打折;若沒摸出紅球,則不打折.方案二:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,有放回每次摸取球,連摸次,每摸到次紅球,立減元.
(1)若兩個顧客均分別消費了元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古代數學名著《九章算術》中的“盈不足”問題知兩鼠穿垣.今有垣厚5尺,兩鼠對穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.問:何日相逢?題意是:由垛厚五尺(舊制長度單位, 尺= 寸)的墻壁,大小兩只老鼠同時從墻的兩面,沿一直線相對打洞.大鼠第一天打進尺,以后每天的速度為前一天的倍;小鼠第一天也打進尺,以后每天的進度是前一天的一半.它們多久可以相遇?
A. 天 B. 天 C. 天 D. 天
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某外商到一開發(fā)區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經費12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元。設表示前年的純收入(前年的總收入一前年的總支出一投資額)
(1)試寫出的關系式.
(2) 該開發(fā)商從第幾年開始獲利?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A在直線2x-3y+5=0上移動,點P為連接M(4,-3)和點A的線段的中點,則點P的軌跡方程為
A. 2x-3y-6=0 B. 2x-3y+2=0 C. 2x-3y+11=0 D. 2x+3y-6=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下面類比推理:
①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復數集)”.
其中結論正確的個數為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數在某一個周期內的圖象時,列表并填入了部分數據,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數據補充完整,填寫在相應位置,并求出函數的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數的圖象,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數學屆的震動。在1859年的時候,德國數學家黎曼向科學院提交了題目為《論小于某值的素數個數》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數學家歐拉也曾研究過這個問題,并得到小于數字的素數個數大約可以表示為的結論。若根據歐拉得出的結論,估計1000以內的素數的個數為_________(素數即質數,,計算結果取整數)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現(xiàn)將甲、乙兩個學生在高二的6次數學測試的成績(百分制)制成如圖所示的莖葉圖,進人高三后,由于改進了學習方法,甲、乙這兩個學生的考試數學成績預計同時有了大的提升.若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應的考試成績預計為(若>100.則取為100).若已知甲、乙兩個學生的高二6次考試成績分別都是由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值.
(I)試預測:在將要進行的高三6次測試中,甲、乙兩個學生的平均成績分別為多少?(計算結果四舍五入,取整數值)
(Ⅱ)求的分布列和數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com