化簡求值:
(1)
(lg5)2+lg2•lg5+lg20-•+2(1+log25).
(2)
sin50°•(1+tan10°).
考點:對數(shù)的運算性質(zhì)
專題:計算題
分析:(1)根據(jù)對數(shù)的運算法則進行計算即可得到結(jié)論.
(2)根據(jù)三角函數(shù)的關(guān)系式進行化簡.
解答:
解:(1)原式=
lg?5(lg?5+lg?20)+lg?20-2+2?2log?2=lg5+lg20-
2+2=lg100=2.
(2)原式=
sin?50??(1+)=sin?50??=
sin?50??2(cos?10?+sin?10?) |
cos?10? |
=
sin?50??=cos?40??=
==1.
點評:本題主要考查對數(shù)和三角值的化簡與計算,考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)a為實數(shù),函數(shù)f(x)=x2+|x-a|-1,x∈R
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x2-2ax-(2a+2)
(Ⅰ)解關(guān)于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在區(qū)間(-1,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在同一坐標系中,畫出函數(shù)y=sinx和函數(shù)y=tanx在x∈[0,2π]的圖象,并根據(jù)圖象回答下列問題:
(1)寫出這兩個函數(shù)圖象的交點坐標;
(2)寫出使tanx>sinx成立的x的取值范圍;
(3)寫出使tanx=sinx成立的x的取值范圍;
(4)寫出使tanx<sinx成立的x的取值范圍;
(5)寫出使這兩個函數(shù)具有相同的單調(diào)性的區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)f(x)=x2+|x-a|,試判斷函數(shù)f(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求證:函數(shù)f(x)=-
-1在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,已知a=7,b=5,∠A=120°,則c=
.
查看答案和解析>>