【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計算)需再收元.
該公司將近天,每天攬件數(shù)量統(tǒng)計如下:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
(1)某人打算將, , 三件禮物隨機(jī)分成兩個包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;
(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費(fèi)用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?
【答案】(1) ;(2)答案見解析.
【解析】試題分析: 通過列表給出寄出方式,運(yùn)用古典概率即可計算結(jié)果求出各種情況的頻率,分別求出不裁員和裁員兩種情況的利潤,比較結(jié)果
解析:(1)由題意,寄出方式有以下三種可能:
情況 | 第一個包裹 | 第二個包裹 | 甲支付的總快遞費(fèi) | ||||
禮物 | 重量() | 快遞費(fèi)(元) | 禮物 | 重量() | 快遞費(fèi)(元) | ||
, | |||||||
, | |||||||
, |
所有種可能中,有種可能快遞費(fèi)未超過元,根據(jù)古典概型概率計算公式,所求概率為.
(2)將題目中的數(shù)據(jù)轉(zhuǎn)化為頻率,得
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) | |||||
頻率 |
若不裁員,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:
包裹件數(shù) (近似處理) | |||||
實際攬件數(shù) | |||||
頻率 | |||||
平均攬件數(shù) |
|
故公司平均每日利潤為(元);
若裁員人,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:
包裹件數(shù) (近似處理) | |||||
實際攬件數(shù) | |||||
頻率 | |||||
平均攬件數(shù) |
|
故公司平均每日利潤為(元).
故公司將前臺工作人員裁員人對提高公司利潤不利.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進(jìn)行統(tǒng)計,按照、、、、的分組作出頻率分布直方圖,已知得分在、的頻數(shù)分別為、.
(1)求樣本容量和頻率分布直方圖中的、的值;
(2)估計本次競賽學(xué)生成績的眾數(shù)、中位數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動點(diǎn)的軌跡的方程;
(2)設(shè)動直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和滿足 .
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,
(I)求數(shù)列的前項和;
(II)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項和為,且成等比數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)若,為數(shù)列的前項和.若對于任意的,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為,的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).
(1)試判斷與的大小,并證明你的猜想.
(2)令,,試判斷與的大小,并證明你的猜想.
(3)令,,,試判斷、、三者之間的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(I)證明:CE∥平面PAB;
(II)求直線CE與平面PBC所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:,直線l:,下列四個選項,其中正確的是( )
A.對任意實數(shù)k與θ,直線l和圓M有公共點(diǎn)
B.存在實數(shù)k與θ,直線l和圓M相離
C.對任意實數(shù)k,必存在實數(shù)θ,使得直線l與圓M相切
D.對任意實數(shù)θ,必存在實數(shù)k,使得直線l與圓M相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,合肥一中積極開展美麗校園建設(shè),現(xiàn)擬在邊長為0.6千米的正方形地塊上劃出一片三角形地塊建設(shè)小型生態(tài)園,點(diǎn)分別在邊上.
(1)當(dāng)點(diǎn)分別時邊中點(diǎn)和靠近的三等分點(diǎn)時,求的余弦值;
(2)實地勘察后發(fā)現(xiàn),由于地形等原因,的周長必須為1.2千米,請研究是否為定值,若是,求此定值,若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com