【題目】已知圓M:,直線l:,下列四個(gè)選項(xiàng),其中正確的是( )
A.對(duì)任意實(shí)數(shù)k與θ,直線l和圓M有公共點(diǎn)
B.存在實(shí)數(shù)k與θ,直線l和圓M相離
C.對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與圓M相切
D.對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與圓M相切
【答案】AC
【解析】
先確定圓的圓心坐標(biāo)、直線所過(guò)的定點(diǎn),根據(jù)直線與圓的位置關(guān)系,結(jié)合兩點(diǎn)的距離公式、點(diǎn)到直線的距離公式、輔助角公式進(jìn)行判斷即可.
根據(jù)題意知圓M的圓心坐標(biāo)為M(1+cosθ,2+sinθ),半徑為1,
,直線l恒過(guò)定點(diǎn)N(1,2),
,所以定點(diǎn)N(1,2)在圓M上,
無(wú)論θ取何值,都由(1﹣1﹣cosθ)2+(2﹣2﹣sinθ)2=1,
因此直線l和圓M有公共點(diǎn),所以選項(xiàng)A正確,選項(xiàng)B錯(cuò)誤;
圓心M到直線l的距離
,(其中sinβ,cosβ,tanβ=k)
當(dāng)時(shí),,所以對(duì)任意實(shí)數(shù)k,
tanβ=k,所以必存在實(shí)數(shù)θ,
使得直線l與圓M相切,所以C正確.
當(dāng)θ=0°時(shí),,tanβ不存在,所以D不正確.
故選:AC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為, .
(1)如果,且對(duì)于一切正整數(shù),均有,求;
(2)如果對(duì)于一切正整數(shù),均有,求;
(3)如果對(duì)于一切正整數(shù),均有,證明: 能被8整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,除收費(fèi)元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收元.
該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
(1)某人打算將, , 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過(guò)元的概率;
(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過(guò)件,工資元,目前前臺(tái)有工作人員人,那么,公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)是否更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩品種的棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位:mm),得到如圖5的莖葉圖,整數(shù)位為莖,小數(shù)位為葉,如27.1mm的莖為27,葉為1.
(1)試比較甲、乙兩種棉花的纖維長(zhǎng)度的平均值的大小及方差的大小;(只需寫出估計(jì)的結(jié)論,不需說(shuō)明理由)
(2)將棉花按纖維長(zhǎng)度的長(zhǎng)短分成七個(gè)等級(jí),分級(jí)標(biāo)準(zhǔn)如表:
試分別估計(jì)甲、乙兩種棉花纖維長(zhǎng)度等級(jí)為二級(jí)的概率;
(3)為進(jìn)一步檢驗(yàn)甲種棉花的其它質(zhì)量指標(biāo),現(xiàn)從甲種棉花中隨機(jī)抽取4根,記為抽取的棉花纖維長(zhǎng)度為二級(jí)的根數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)作軸的垂線段,垂足為,點(diǎn)在線段上,且,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí).
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)直線與上述軌跡相交于M、N兩點(diǎn),且MN的中點(diǎn)在直線上,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2sinxcosx﹣sin2x.
(1)求函數(shù)f(x)的最小正周期
(2)求函數(shù)f(x)單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為、,短軸的兩個(gè)端點(diǎn)分別為、,且為等邊三角形.
(1)若橢圓長(zhǎng)軸的長(zhǎng)為4,求橢圓的方程;
(2)如果在橢圓上存在不同的兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn),橢圓上兩點(diǎn)、滿足,求點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)心肺疾病入院的人進(jìn)行問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中選人,求恰好有名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?
參考公式: ,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com