【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中選人,求恰好有名女性的概率;
(3)為了研究心肺疾病是否與性別有關,請計算出統(tǒng)計量,你有多大把握認為心肺疾病與性別有關?
參考公式: ,其中.
【答案】(1)見解析;(2);(3)有把握認為心肺疾病與性別有關
【解析】試題分析:(1)由列聯(lián)表知,患心肺疾病的有30人,要抽取6人,用分層抽樣的方法,則男性要抽取人;(2)采用列舉法求出從6人中選2人,恰有1名女性的概率為;(3)由列聯(lián)表中的數(shù)據(jù),代入公式中,算出,查臨界值表知:有把握認為心肺疾病與性別有關。
試題解析:(1)在患心肺疾病的人群中抽人,其中男性抽人;
(2)設男分為: , , , ; 女分為: , ,則人中抽出人的所有抽法:(列舉略)共種抽法,其中恰好有名女性的抽法有種.所以恰好有個女生的概率為.
(3)由列聯(lián)表得,查臨界值表知:有把握認為心肺疾病與性別有關.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:,直線l:,下列四個選項,其中正確的是( )
A.對任意實數(shù)k與θ,直線l和圓M有公共點
B.存在實數(shù)k與θ,直線l和圓M相離
C.對任意實數(shù)k,必存在實數(shù)θ,使得直線l與圓M相切
D.對任意實數(shù)θ,必存在實數(shù)k,使得直線l與圓M相切
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,合肥一中積極開展美麗校園建設,現(xiàn)擬在邊長為0.6千米的正方形地塊上劃出一片三角形地塊建設小型生態(tài)園,點分別在邊上.
(1)當點分別時邊中點和靠近的三等分點時,求的余弦值;
(2)實地勘察后發(fā)現(xiàn),由于地形等原因,的周長必須為1.2千米,請研究是否為定值,若是,求此定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F2,且|F1F2|=,橢圓的長半軸與雙曲線實半軸之差為4,離心率之比為3∶7.
(1)求這兩曲線的方程;
(2)若P為這兩曲線的一個交點,求cos∠F1PF2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了考核甲,乙兩部門的工作情況,隨機訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下:
(1)分別估計該市的市民對甲,乙兩部門評分的中位數(shù);
(2)分別估計該市的市民對甲,乙兩部門的評分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結果如下表.
非一線城市 | 一線城市 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
由算得,,
參照附表,得到的正確結論是
A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關”
C. 有99%以上的把握認為“生育意愿與城市級別有關”
D. 有99%以上的把握認為“生育意愿與城市級別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與函數(shù)的圖象關于軸對稱,若函數(shù)與函數(shù)在區(qū)間上同時單調(diào)遞增或同時單調(diào)遞減,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線C的頂點在原點O,過點,其焦點F在x軸上.
求拋物線C的標準方程;
斜率為1且與點F的距離為的直線與x軸交于點M,且點M的橫坐標大于1,求點M的坐標;
是否存在過點M的直線l,使l與C交于P、Q兩點,且若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓: 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .
(1)求橢圓的標準方程;
(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com