【題目】在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn)O,過(guò)點(diǎn),其焦點(diǎn)Fx軸上.

求拋物線C的標(biāo)準(zhǔn)方程;

斜率為1且與點(diǎn)F的距離為的直線x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);

是否存在過(guò)點(diǎn)M的直線l,使lC交于P、Q兩點(diǎn),且若存在,求出直線l的方程;若不存在,說(shuō)明理由.

【答案】(1);(2);(3)見(jiàn)解析.

【解析】

(1)設(shè)的方程為,其過(guò)點(diǎn),解得m值,從而得到結(jié)果;

(2)設(shè)的方程為,利用點(diǎn)到直線距離得到,又點(diǎn)的橫坐標(biāo)大于,從而得到點(diǎn)的坐標(biāo);

(3)設(shè)的方程為,代入拋物線方程可得,結(jié)合韋達(dá)定理即可作出判斷.

(1)設(shè)的方程為

的方程為

(2)點(diǎn)的坐標(biāo)為

設(shè)的方程為

軸的交點(diǎn)為,

>

點(diǎn)的坐標(biāo)為

(3)設(shè)的方程為,Q

,

,則要,即不成立

不存在滿足條件的直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個(gè)零點(diǎn),求a的取值范圍;
(2)若對(duì)任意x>0,恒有不等式f(x)≥1成立. ①求實(shí)數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)寫(xiě)出直線l的普通方程以及曲線C的極坐標(biāo)方程;
(2)若直線l與曲線C的兩個(gè)交點(diǎn)分別為M,N,直線l與x軸的交點(diǎn)為P,求|PM||PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐P﹣ABC中,AP=AB,平面PAB⊥平面ABC,ABC=90°,D,E分別為PB,BC的中點(diǎn).

(1)求證:DE∥平面PAC;

(2)求證:DEAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某算法的程序框圖,若程序運(yùn)行后輸出的結(jié)果是14,則判斷框內(nèi)填入的條件可以是(
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹(shù)上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在, , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)求質(zhì)量落在, 兩組內(nèi)的蜜柚的抽取個(gè)數(shù),

(2)從質(zhì)量落在, 內(nèi)的蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年美國(guó)總統(tǒng)大選過(guò)后,有媒體從某公司的全體員工中隨機(jī)抽取了200人,對(duì)他們的投票結(jié)果進(jìn)行了統(tǒng)計(jì)(不考慮棄權(quán)等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表:據(jù)此材料,是否有95%的把握認(rèn)為投票結(jié)果與性別有關(guān)?

支持希拉里

支持特朗普

合計(jì)

男員工

女員工

合計(jì)

(Ⅱ)若從該公司的所有男員工中隨機(jī)抽取3人,記其中支持特朗普的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.(用相應(yīng)的頻率估計(jì)概率)
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函數(shù)g(x)=|f(x)|﹣a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ) 求|f(x+1)|≤4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知四棱錐PABCD,底面ABCD為菱形,PA平面ABCD,ABC=60°,E,F分別是BC,PC的中點(diǎn).

(1)證明:AEPD;

(2)HPD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,

求二面角EAFC的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案