【題目】如圖是某算法的程序框圖,若程序運(yùn)行后輸出的結(jié)果是14,則判斷框內(nèi)填入的條件可以是(
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?

【答案】B
【解析】解:模擬執(zhí)行程序,可得: S=0,n=1
第二次循環(huán)n=2,s=0+1+2=3;
第三次循環(huán)n=3,s=3﹣1+3=5;
第四次循環(huán)n=4,s=5+1+4=10.
第五次進(jìn)入循環(huán)體后,n=5,s=10﹣1+5=14,
滿(mǎn)足條件S≥14?,跳出循環(huán).
故選B.
【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某機(jī)械廠要將長(zhǎng),寬的長(zhǎng)方形鐵皮進(jìn)行裁剪.已知點(diǎn)的中點(diǎn),點(diǎn)在邊上,裁剪時(shí)先將四邊形沿直線(xiàn)翻折到處(點(diǎn)分別落在直線(xiàn)下方點(diǎn)處,交邊于點(diǎn)),再沿直線(xiàn)裁剪.

(1)當(dāng)時(shí),試判斷四邊形的形狀,并求其面積;

(2)若使裁剪得到的四邊形面積最大,請(qǐng)給出裁剪方案,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)上任意一點(diǎn)到直線(xiàn)的距離是它到點(diǎn)的距離的2倍.

(1) 求曲線(xiàn)的方程;

(2) 過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn).若的中點(diǎn),求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,過(guò)點(diǎn)C作CO⊥AB,垂足為O,將△OBC沿CO折起,如圖2使得平面CBO與平面AOCD所成的二面角的大小為θ(0<θ<π),E,F(xiàn)分別為BC,AO的中點(diǎn)
(1)求證:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線(xiàn)l與曲線(xiàn)C沒(méi)有公共點(diǎn),求m的取值范圍;
(2)若m=0,求直線(xiàn)l被曲線(xiàn)C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)C的頂點(diǎn)在原點(diǎn)O,過(guò)點(diǎn),其焦點(diǎn)Fx軸上.

求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;

斜率為1且與點(diǎn)F的距離為的直線(xiàn)x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);

是否存在過(guò)點(diǎn)M的直線(xiàn)l,使lC交于P、Q兩點(diǎn),且若存在,求出直線(xiàn)l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2是雙曲線(xiàn)C1 =1(a>0,b>0)的左、右焦點(diǎn),且F2是拋物線(xiàn)C2:y2=2px(p>0)的焦點(diǎn),P是雙曲線(xiàn)C1與拋物線(xiàn)C2在第一象限內(nèi)的交點(diǎn),線(xiàn)段PF2的中點(diǎn)為M,且|OM|= |F1F2|,其中O為坐標(biāo)原點(diǎn),則雙曲線(xiàn)C1的離心率是(
A.2+
B.1+
C.2+
D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A,B,C為的a、b、c所對(duì)的角,若
(1)求A;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某零售店近5個(gè)月的銷(xiāo)售額和利潤(rùn)額資料如下表:

商店名稱(chēng)

銷(xiāo)售額/千萬(wàn)元

3

5

6

7

9

利潤(rùn)額/百萬(wàn)元

2

3

3

4

5

(1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計(jì)算利潤(rùn)額關(guān)于銷(xiāo)售額的回歸直線(xiàn)方程;

(3)當(dāng)銷(xiāo)售額為4千萬(wàn)元時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤(rùn)額(百萬(wàn)元).

[參考公式:]

查看答案和解析>>

同步練習(xí)冊(cè)答案