【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個(gè)零點(diǎn),求a的取值范圍;
(2)若對(duì)任意x>0,恒有不等式f(x)≥1成立. ①求實(shí)數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

【答案】
(1)解:f(x)=xex﹣alnx﹣ax,x>0,則

當(dāng)a≤0時(shí),f'(x)>0,故f(x)單調(diào)遞增,故不可能存在兩個(gè)零點(diǎn),不符合題意;

當(dāng)a>0時(shí),f'(x)=0有唯一解x=x0,此時(shí) ,則

注意到 ,因此


(2)解:①當(dāng)a<0時(shí),f(x)單調(diào)遞增,f(x)的值域?yàn)镽,不符合題意;

當(dāng)a=0時(shí),則 ,也不符合題意.

當(dāng)a>0時(shí),由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.

,上式即轉(zhuǎn)化為lnt≥t﹣1,

設(shè)h(t)=lnt﹣t+1,則 ,因此h(t)在(0,1)上單調(diào)遞增,

在(1,+∞)上單調(diào)遞減,從而h(x)max=h(1)=0,所以lnt≤t﹣1.

因此,lnt=t﹣1t=1,從而有

故滿足條件的實(shí)數(shù)為a=1.

②證明:由①可知x2ex﹣xlnx≥x2+x,因而只需證明:x>0,恒有x2+x>2lnx+2sinx.

注意到前面已經(jīng)證明:x﹣1≥lnx,因此只需證明:x2﹣x+2>2sinx.

當(dāng)x>1時(shí),恒有2sinx≤2<x2﹣x+2,且等號(hào)不能同時(shí)成立;

當(dāng)0<x≤1時(shí),設(shè)g(x)=x2﹣x+2﹣2sinx,則g'(x)=2x﹣1﹣2cosx,

當(dāng)x∈(0,1]時(shí),g'(x)是單調(diào)遞增函數(shù),且 ,

因而x∈(0,1]時(shí)恒有g(shù)'(x)<0;從而x∈(0,1]時(shí),g(x)單調(diào)遞減,

從而g(x)≥g(1)=2﹣2sin1>0,即x2﹣x+2>2sinx.

故x2ex>(x+2)lnx+2sinx


【解析】(1)利用導(dǎo)數(shù)的運(yùn)算法則可得f′(x),對(duì)a分類討論,當(dāng)a≤0時(shí),f'(x)>0,故f(x)單調(diào)遞增,舍去.當(dāng)a>0時(shí),f'(x)=0有唯一解x=x0 , 此時(shí) ,求出極值,進(jìn)而得出答案.(2)①當(dāng)a≤0時(shí),不符合題意.當(dāng)a>0時(shí),由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.令 ,上式即轉(zhuǎn)化為lnt≥t﹣1,利用導(dǎo)數(shù)研究其單調(diào)性極值即可得出.②由①可知x2ex﹣xlnx≥x2+x,因而只需證明:x>0,恒有x2+x>2lnx+2sinx.注意到前面已經(jīng)證明:x﹣1≥lnx,因此只需證明:x2﹣x+2>2sinx.對(duì)x分類討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC和△A1B1C1滿足sinA=cosA1 , sinB=cosB1 , sinC=cosC1
(1)求證:△ABC是鈍角三角形,并求最大角的度數(shù);
(2)求sin2A+sin2B+sin2C的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= (an﹣1),數(shù)列{bn}滿足bn+2=2bn+1﹣bn , 且b6=a3 , b60=a5 , 其中n∈N*. (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(﹣1)nbnbn+1 , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示:

(I)求的解析式及對(duì)稱中心坐標(biāo);

(Ⅱ)將的圖象向右平移個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)的圖象,求函數(shù)上的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn),,曲線上任意一點(diǎn)滿足

的方程;

已知點(diǎn),動(dòng)點(diǎn) 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點(diǎn)分別為D,E,求的面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) . (I)求函數(shù)f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知 ,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與函數(shù)的圖象有三個(gè)不同的交點(diǎn)、,其中.給出下列四個(gè)結(jié)論: ①;②;③;④.其中,正確結(jié)論的個(gè)數(shù)有( 個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲,乙兩個(gè)抽獎(jiǎng)方案供員工選擇. 方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率均為 ,第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束,若中獎(jiǎng),則通過(guò)拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),則獲得1000元;若未中獎(jiǎng),則不能獲得獎(jiǎng)金.
方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為 ,每次中獎(jiǎng)均可獲得獎(jiǎng)金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),哪個(gè)方案更劃算?
(Ⅲ)已知公司共有100人在活動(dòng)中選擇了方案甲,試估計(jì)這些員工活動(dòng)結(jié)束后沒(méi)有獲獎(jiǎng)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,CDAD,BCAD.

(Ⅰ)求證:CDPD

(Ⅱ)求證:BD⊥平面PAB;

(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案