【題目】已知函數(shù)的部分圖象如圖所示:
(I)求的解析式及對稱中心坐標;
(Ⅱ)將的圖象向右平移個單位,再將橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數(shù)的圖象,求函數(shù)在上的單調(diào)區(qū)間及最值.
【答案】(Ⅰ) ;對稱中心的坐標為() (Ⅱ)見解析
【解析】
(I)先根據(jù)圖像得到函數(shù)的最大值和最小值,由此列方程組求得的值,根據(jù)周期求得的值,根據(jù)圖像上求得的值,由此求得的解析式,進而求得的對稱中心.(II)求得圖像變換之后的解析式,通過求出的單調(diào)區(qū)間求得在區(qū)間上的最大值和最小值.
解:(I)由圖像可知:,可得:
又由于,可得:,所以
由圖像知,,又因為
所以,.所以
令(),得:()
所以的對稱中心的坐標為()
(II)由已知的圖像變換過程可得:
由的圖像知函數(shù)在上的單調(diào)增區(qū)間為,
單調(diào)減區(qū)間
當時,取得最大值2;當時,取得最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C: =1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點,A,D兩點在x軸上的射影分別為點B,C.記△OAD的面積S1 , 四邊形ABCD的面積為S2 . (Ⅰ)當點B坐標為(﹣1,0)時,求k的值;
(Ⅱ)若S1= ,求線段AD的長;
(Ⅲ)求 的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,△PBC為等邊三角形,點O為BC的中點,AC⊥PB,平面PBC⊥平面ABC.
(1)求直線PB和平面ABC所成的角的大;
(2)求證:平面PAC⊥平面PBC;
(3)已知E為PO的中點,F(xiàn)是AB上的點,AF=AB.若EF∥平面PAC,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),下列命題正確的有_______.(寫出所有正確命題的編號)
①是奇函數(shù);
②在上是單調(diào)遞增函數(shù);
③方程有且僅有1個實數(shù)根;
④如果對任意,都有,那么的最大值為2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com