已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實(shí)數(shù)的取值范圍;

(1)當(dāng)時(shí),沒有極值;當(dāng)時(shí),存在極大值,且當(dāng)時(shí),;(2)

解析試題分析:(1)對求導(dǎo)可得,由極值定義可知要對進(jìn)行分類討論,當(dāng),,函數(shù)無極值,當(dāng)時(shí),可得當(dāng)存在極大值;(2) 由函數(shù)的導(dǎo)函數(shù),且,得,可知不等式變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/a/lwxht2.png" style="vertical-align:middle;" />,求出的取值范圍,可得m的范圍.
解:(1) 函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/3/1dfpz3.png" style="vertical-align:middle;" />,
當(dāng)時(shí),,上為增函數(shù),沒有極值;當(dāng)時(shí),
時(shí),;若時(shí),
存在極大值,且當(dāng)時(shí),
綜上可知:當(dāng)時(shí),沒有極值;當(dāng)時(shí),存在極大值,且當(dāng)時(shí), 
(2) 函數(shù)的導(dǎo)函數(shù)
,
,使得不等式成立,
,使得成立,
對于,,由于,
當(dāng)時(shí),,,
,從而上為減函數(shù),

考點(diǎn):1.導(dǎo)數(shù)的運(yùn)算;2.函數(shù)的極值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)上的最小值是2 ,求的值;
(3)⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是否存在實(shí)數(shù)a,使函數(shù)f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?如果存在,求出a的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為元,并且每件產(chǎn)品需向總公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬件.
(1)求該分公司一年的利潤(萬元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該分公司一年的利潤最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)(2011•廣東)設(shè)a>0,討論函數(shù)f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè)
① 當(dāng)時(shí),對任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N +),其中xn為正實(shí)數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

同步練習(xí)冊答案