設(shè)在12個(gè)同類型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次抽取一個(gè),并且取出不再放回,若以ξ和分別表示取出次品和正品的個(gè)數(shù).
(1)求的概率分布、期望值及方差;
(2)求的概率分布、期望值及方差.
(1)E()=0×+1×+2×=.V()=(0-)2×+×+×=++=.
(2)E()=E(3-)=3-E()=3-=.V()=(-1)2V()=.
(1)的可能值為0,1,2.
=0,表示沒(méi)有取出次品,其概率為:
P(=0)==;
同理,有P(=1)==;P(=2)==.
的概率分布為:

0
1
2
P



∴E()=0×+1×+2×=.
V()=(0-)2×+×+×
=++=.
(2)的可能值為1,2,3,顯然+=3.
P(=1)=P(=2)=,P(=2)=P(=1)=,
P(=3)=P(=0)=.
的概率分布為:
 
1
2
3
P



E()=E(3-)=3-E()=3-=.
=-+3,∴V()=(-1)2V()=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知時(shí)刻一質(zhì)點(diǎn)在數(shù)軸的原點(diǎn),該質(zhì)點(diǎn)每經(jīng)過(guò)秒就要向右跳動(dòng)一個(gè)單位長(zhǎng)度,已知每次跳動(dòng),該質(zhì)點(diǎn)向左的概率為,向右的概率為
(1)求秒時(shí)刻,該質(zhì)點(diǎn)在數(shù)軸上處的概率.
(2)設(shè)秒時(shí)刻,該質(zhì)點(diǎn)在數(shù)軸上處,求、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某研究機(jī)構(gòu)準(zhǔn)備舉行一次數(shù)學(xué)新課程研討會(huì),共邀請(qǐng)50名一線教師參加,使用不同版本教材的教師人數(shù)如下表所示:
版本
人教A版
人教B版
蘇教版
北師大版
人數(shù)
20
15
5
10
  (Ⅰ)從這50名教師中隨機(jī)選出2名,求2人所使用版本相同的概率;
(Ⅱ)若隨機(jī)選出2名使用人教版的教師發(fā)言,設(shè)使用人教A版的教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
某校積極響應(yīng)《全面健身?xiàng)l例》,把周五下午5:00~6:00定為職工活動(dòng)時(shí)間,并成立了行政和教師兩支籃球隊(duì),但由于工作性質(zhì)所限,每月(假設(shè)為4周)每支球隊(duì)只能組織兩次活動(dòng),且兩支球隊(duì)的活動(dòng)時(shí)間是相互獨(dú)立的。
(1)求這兩支球隊(duì)每月兩次都在同一時(shí)間活動(dòng)的頻率;
(2)設(shè)這兩支球隊(duì)每月能同時(shí)活動(dòng)的次數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩名射擊運(yùn)動(dòng)員,甲射擊一次命中環(huán)的概率為,乙射擊一次命中環(huán)的概率為,若他們獨(dú)立的射擊兩次,設(shè)乙命中環(huán)的次數(shù)為,則為甲與乙命中環(huán)的次數(shù)的差的絕對(duì)值.求的值及的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)離散型隨機(jī)變量X的概率分布為
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(1)2X+1的概率分布;
(2)|X-1|的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某街頭小攤,在不下雨的日子可賺到100元,在下雨天則要損失10元.若該地區(qū)每年下雨的日子約為130天,則此小攤每天獲利的期望值是__________(每年按365天計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面朝上的次為;乙拋擲3次,記正面朝上的次為.(Ⅰ)分別求的期望;(Ⅱ)規(guī)定:若>,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題


隨機(jī)變量的概率分布為右表所示,則的值為     。

查看答案和解析>>

同步練習(xí)冊(cè)答案