某研究機構(gòu)準備舉行一次數(shù)學(xué)新課程研討會,共邀請50名一線教師參加,使用不同版本教材的教師人數(shù)如下表所示:
版本
人教A版
人教B版
蘇教版
北師大版
人數(shù)
20
15
5
10
  (Ⅰ)從這50名教師中隨機選出2名,求2人所使用版本相同的概率;
(Ⅱ)若隨機選出2名使用人教版的教師發(fā)言,設(shè)使用人教A版的教師人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望。
(Ⅰ)
(Ⅱ)的分布列為
;
(Ⅰ)從50名教師隨機選出2名的方法數(shù)為
選出2人使用版本相同的方法數(shù)為,
故2人使用版本相同的概率為:!6分
(Ⅱ)∵,,
的分布列為

……12分
。……14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
班主任為了對本班學(xué)生的考試成績進行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結(jié)果);
(2)隨機抽取8位同學(xué),數(shù)學(xué)分數(shù)依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定90分(含90分)以上為優(yōu)秀,記為這8位同學(xué)中數(shù)學(xué)和物理分數(shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學(xué)期望;
②若這8位同學(xué)的數(shù)學(xué)、物理分數(shù)事實上對應(yīng)下表:
學(xué)生編號
1
2
3
4
5
6
7
8
數(shù)學(xué)分數(shù)
60
65
70
75
80
85
90
95
物理分數(shù)
72
77
80
84
88
90
93
95
 
根據(jù)上表數(shù)據(jù)可知,變量之間具有較強的線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到0.01).(參考公式:,其中,;參考數(shù)據(jù):,,,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某項競賽分別為初賽、復(fù)賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是,且各階段通過與否相互獨立.
(I)求該選手在復(fù)賽階段被淘汰的概率;
(II)設(shè)該選手在競賽中回答問題的個數(shù)為,求的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將一枚硬幣拋擲n次,求正面次數(shù)與反面次數(shù)之差ξ的概率分布,并求出ξ的期望Eξ與方差Dξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲、乙兩人進行一場乒乓球比賽,根據(jù)以往比賽的勝負情況知道,每一局比賽甲勝的概率0.6,乙勝的概率為0.4,本場比賽采用三局兩勝制。
(1)求甲獲勝的概率.
(2)設(shè)ξ為本場比賽的局數(shù),求ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射手進行射擊練習,每射擊5發(fā)子彈算一組,一旦命中就停止射擊,并進入下一組的練習,否則一直打完5發(fā)子彈后才能進入下一組練習,若該射手在某組練習中射擊命中一次,并且已知他射擊一次的命中率為0.8,求在這一組練習中耗用子彈數(shù)的分布列,并求出的期望與方差(保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有三張大小形狀質(zhì)量完全相同的卡片,三張卡片上分別寫有0,1,2三個數(shù)字,現(xiàn)從中任抽一張,其上面的數(shù)字記為x,然后放回,再抽一張,其上面的數(shù)字記為y,記=xy,求:(1)的分布列;(2)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)求該人在4次投擲中恰有三次投入紅袋的概率;
(Ⅱ)求該人兩次投擲后得分的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)在12個同類型的零件中有2個次品,抽取3次進行檢驗,每次抽取一個,并且取出不再放回,若以ξ和分別表示取出次品和正品的個數(shù).
(1)求的概率分布、期望值及方差;
(2)求的概率分布、期望值及方差.

查看答案和解析>>

同步練習冊答案