【題目】隨著2022年北京冬奧會(huì)的臨近,中國(guó)冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動(dòng)人數(shù)快速上升,冰雪運(yùn)動(dòng)市場(chǎng)需求得到釋放.如圖是2012-2018年中國(guó)雪場(chǎng)滑雪人數(shù)(單位:萬(wàn)人)與同比增長(zhǎng)情況統(tǒng)計(jì)圖.則下面結(jié)論中正確的是( )

2012-2018年,中國(guó)雪場(chǎng)滑雪人數(shù)逐年增加;②2013-2015年,中國(guó)雪場(chǎng)滑雪人數(shù)和同比增長(zhǎng)率均逐年增加;③中國(guó)雪場(chǎng)2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬(wàn)人,因此這兩年的同比增長(zhǎng)率均有提高;④2016-2018年,中國(guó)雪場(chǎng)滑雪人數(shù)的增長(zhǎng)率約為23.4%.

A.①②③B.②③④C.①②D.③④

【答案】C

【解析】

根據(jù)圖中條形統(tǒng)計(jì)圖與折線圖的實(shí)際意義分析逐個(gè)判定即可.

對(duì)①,由條狀圖可知, 中國(guó)雪場(chǎng)滑雪人數(shù)逐年增加正確.故①正確.

對(duì)②, 2013-2015年,中國(guó)雪場(chǎng)滑雪人數(shù)和同比增長(zhǎng)率均逐年增加正確. 故②正確.

對(duì)③,中國(guó)雪場(chǎng)2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬(wàn)人,但2018年同比增長(zhǎng)率為

,相比 2017年同比增長(zhǎng)率為有所下降.故③錯(cuò)誤.

對(duì)④, 2016-2018年,中國(guó)雪場(chǎng)滑雪人數(shù)的增長(zhǎng)率為.故④錯(cuò)誤.

故①②正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒中有形狀、大小、質(zhì)地完全相同的5張撲克牌,其中3張紅桃,1張黑桃,1張梅花.現(xiàn)從盒中一次性隨機(jī)抽出2張撲克牌,則這2張撲克牌花色不同的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,,的中點(diǎn),平行于平行于面,.

(1)求的長(zhǎng);

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點(diǎn),且

(1)求橢圓的方程;

(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且,若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)車生產(chǎn)企業(yè),上年度生產(chǎn)電動(dòng)車的投入成本為1萬(wàn)元/輛,出廠價(jià)為1.2萬(wàn)元/輛,年銷售量為1000輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價(jià)相應(yīng)提高的比例為,且當(dāng)不超過(guò)0.5時(shí),預(yù)計(jì)年銷售量增加的比例為,而當(dāng)超過(guò)0.5時(shí),預(yù)計(jì)年銷售量不變.已知年利潤(rùn)=(出廠價(jià)-投入成本)×年銷售量.則本年度預(yù)計(jì)的年利潤(rùn)與投入成本增加的比例的關(guān)系式為______;為使本年度利潤(rùn)比上年有所增加,投入成本增加的比例的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面ABB1A1是菱形,且CACB1

1)證明:面CBA1⊥面CB1A;

2)若∠BAA160°,A1CBCBA1,求二面角CA1B1C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時(shí),求證:過(guò)原點(diǎn)且與曲線相切的直線有且只有一條;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過(guò)橢圓左焦點(diǎn)的直線交橢圓兩點(diǎn),點(diǎn)軸非負(fù)半軸上,且點(diǎn)到坐標(biāo)原點(diǎn)的距離為2,求取得最大值時(shí)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案