過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點A作與實軸垂直的直線,交兩漸近線于M、N兩點,F(xiàn)為該雙曲線的右焦點,若△FMN的內(nèi)切圓恰好是x2+y2=a2,則該雙曲線的離心率為( 。
A、
2
B、
3
C、
6
2
D、2
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出M,N的坐標(biāo),利用F為該雙曲線的右焦點,若△FMN的內(nèi)切圓恰好是x2+y2=a2,可得
c
a
=
b2+(a+c)2
b
,即可求出雙曲線的離心率.
解答: 解:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為bx±ay=0,
x=-a時,可得M(-a,b),N(-a,-b),
∵F為該雙曲線的右焦點,若△FMN的內(nèi)切圓恰好是x2+y2=a2,
c
a
=
b2+(a+c)2
b

∴e3-3e-2=0,
∴e=2.
故選:D.
點評:本題考查雙曲線的離心率,考查學(xué)生的計算能力,確定a,c的關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且x+2y+xy=30,則xy的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PD⊥正方形ABCD所在平面,PD=AD=1,則三棱錐P-ABC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C的對邊分別是a,b,c,若a=4,b=5,△ABC的面積為5
3
,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰三角形ABC中,底邊BC=2,
AD
=
DC
,2
AE
=3
EB
,若
BD
AC
=-
1
2
,則
CE
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則(1-i)(2+i)=( 。
A、-3-iB、3-i
C、-3+iD、3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=tan(x+1)+tan(x+2)+tan(x+3)+…+tan(x+2015)圖象的對稱中心是(  )
A、(-1007,0)
B、(-1008,0)
C、(1007,0)
D、(1008,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把曲線C1
y=2cosθ
y=2sinθ
(θ為參數(shù))上各點的橫坐標(biāo)壓縮為原來的
1
4
,縱坐標(biāo)壓縮為原來的
3
4
,得到的曲線C2為(  )
A、12x2+4y2=1
B、4x2+
4y2
3
=1
C、x2+
y2
3
=1
D、3x2+4y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p,q都是r的必要條件,s是r的充分條件,q是s的充分條件,那么
(1)s是q的什么條件?
(2)r是q的什么條件?
(3)p是q的什么條件?

查看答案和解析>>

同步練習(xí)冊答案