已知p,q都是r的必要條件,s是r的充分條件,q是s的充分條件,那么
(1)s是q的什么條件?
(2)r是q的什么條件?
(3)p是q的什么條件?
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:p、q、r、s的關(guān)系如圖所示,由圖即可判斷出.
解答: 解:p、q、r、s的關(guān)系如圖所示,由圖可知:
(1)s是q的充要條件;
(2)r是q的充要條件; 
(3)p是q的必要條件.
點評:本題考查充要條件、充分條件、必要條件.對于這類問題,將語言敘述符號化,畫出它們的綜合結(jié)構(gòu)圖,再給予判定.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點A作與實軸垂直的直線,交兩漸近線于M、N兩點,F(xiàn)為該雙曲線的右焦點,若△FMN的內(nèi)切圓恰好是x2+y2=a2,則該雙曲線的離心率為(  )
A、
2
B、
3
C、
6
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=ex-lnx,下列結(jié)論正確的一個是( 。
A、f(x)有極小值,且極小值點x0∈(0,
1
2
B、f(x)有極大值,且極大值點x0∈(0,
1
2
C、f(x)有極小值,且極小值點x0∈(
1
2
,1)
D、f(x)有極大值,且極大值點x0∈(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn.已知a1=1,
2Sn
n
=an+1-
1
3
n2-n-
2
3
,n∈N*
(1)求a2的值;
(2)求證:數(shù)列{
an
n
}是等差數(shù)列;
(3)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三角形ABC中AB=3,AC=6,∠BAC=60°,D為BC中點,E為中線AD的中點.
(1)試用向量
AB
AC
表示
AD
;
(2)求中線AD的長;
(3)求
BE
AD
所成角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足Sn=a•2n-1
(1)若a=3,求a1和a4的值;       
(2)若{an}是等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如表數(shù)據(jù):
處罰金額x(元)05101520
會闖紅燈的人數(shù)y8050402010
(Ⅰ)若用表中數(shù)據(jù)所得頻率代替概率,則處罰10元時與處罰20元時,行人會闖紅燈的概率的差是多少?
(Ⅱ)若從這5種處罰金額中隨機抽取2種不同的金額進行處罰,在兩個路口進行試驗.
①求這兩種金額之和不低于20元的概率;
②若用X表示這兩種金額之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,四邊形ABB1A1是菱形,四邊形CBB1C1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°,D、E分別是AC、A1B的中點.
(Ⅰ)求證:平面CA1B⊥平面ABB1A1;
(Ⅱ)求證:DE∥平面CBB1C1;
(Ⅲ)求四面體A1ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如表所示:
年份200x(年)01234
人口數(shù) y (十萬)5781119
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 y 關(guān)于x的線性回歸方程;
(Ⅲ)據(jù)此估計2005年該城市人口總數(shù).
參考公式:用最小二乘法求線性回歸方程系數(shù)公式 
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

同步練習(xí)冊答案