【題目】已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan , 求數(shù)列{bn}的前項(xiàng)n和Tn .
【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q<1,∵a1= ,且13a2=3S3(n∈N*).
∴13a1q=3a1(1+q+q2),化為:3q2﹣10q+3=0,q<1,解得q= .
∴an= =2×
(2)解:bn=nan= .
∴數(shù)列{bn}的前項(xiàng)n和Tn= +…+ ,
∴ =2 +…+(n﹣1)× +n× ,
∴ =2 =2 =1﹣ ,
∴Tn= ﹣
【解析】(1)設(shè)等比數(shù)列{an}的公比為q<1,根據(jù)a1= ,且13a2=3S3(n∈N*).可得13a1q=3a1(1+q+q2),解出即可得出.(2)bn=nan= .利用“錯(cuò)位相減法”與等比數(shù)列的前項(xiàng)n和公式即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax-1(x≥0).其中a>0,a≠1.
(1)若f(x)的圖象經(jīng)過(guò)點(diǎn)(,2),求a的值;
(2)求函數(shù)y=f(x)(x≥0)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:, 是上一動(dòng)點(diǎn), 是焦點(diǎn), .
(Ⅰ)求的取值范圍;
(Ⅱ)過(guò)點(diǎn)的直線與相交于兩點(diǎn),求使得面積最小時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0, ),則函數(shù)g(x)=cos(2x﹣φ)的圖象( )
A.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)
B.可由函數(shù)f(x)的圖象向右平移 個(gè)單位得到
C.可由函數(shù)f(x)的圖象向左平移 個(gè)單位得到
D.可由函數(shù)f(x)的圖象向左平移 個(gè)單位得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面為梯形,,,且.
(Ⅰ)若點(diǎn)為上一點(diǎn)且,證明:平面;
(Ⅱ)求二面角的大。
(Ⅲ)在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,△ABD是邊長(zhǎng)為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC= .
(1)求證:PA⊥BD;
(2)若PC=BC,求二面角A﹣BP﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專(zhuān)營(yíng)店經(jīng)銷(xiāo)某商品,當(dāng)售價(jià)不高于10元時(shí),每天能銷(xiāo)售100件,當(dāng)價(jià)格高于10元時(shí),每提高1元,銷(xiāo)量減少3件,若該專(zhuān)營(yíng)店每日費(fèi)用支出為500元,用x表示該商品定價(jià),y表示該專(zhuān)營(yíng)店一天的凈收入(除去每日的費(fèi)用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價(jià)為多少元時(shí),一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合P={x∈R|x2-3x+b=0},Q={x∈R|(x+1)(x2+3x-4)=0}.
(1)若b=4,存在集合M使得PMQ;
(2)若PQ,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)(1,f(1))處的切線方程;
(2)求經(jīng)過(guò)點(diǎn)A(1,3)的曲線的切線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com