【題目】某種產(chǎn)品的質(zhì)量以其“無故障使用時間 (單位:小時)”衡量,無故障使用時間越大表明產(chǎn)品質(zhì)量越好,且無故障使用時間大于3小時的產(chǎn)品為優(yōu)質(zhì)品,從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取100件,并記錄了每件產(chǎn)品的無故障使用時間,得到下面試驗(yàn)結(jié)果:
無故障使用時間 (小時) | |||
頻數(shù) | 20 | 40 | 40 |
以試驗(yàn)結(jié)果中無故障使用時間落入各組的頻率作為一件產(chǎn)品的無故障使用時間落入相應(yīng)組的概率.
(1)從該企業(yè)任取兩件這種產(chǎn)品,求至少有一件是優(yōu)質(zhì)品的概率;
(2)若該企業(yè)生產(chǎn)的這種產(chǎn)品每件銷售利潤 (單位:元)與其無故障使用時間的關(guān)系式為
從該企業(yè)任取兩件這種產(chǎn)品,其利潤記為 (單位:元),求的分布列與數(shù)學(xué)期望.
【答案】(1)0.64(2) (元)
【解析】試題分析:(1) 由古典概型概率公式可知,從該企業(yè)任取一件這種產(chǎn)品是優(yōu)質(zhì)品的概率的是,根據(jù)對立事件及獨(dú)立事件的概率公式即可得到從該企業(yè)任取兩件這種產(chǎn)品,至少有一件是優(yōu)質(zhì)產(chǎn)品的概率;(2) 由題意知, 的可能取值為,根據(jù)獨(dú)立事件率公式求出各隨機(jī)變量對應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得的數(shù)學(xué)期望.
試題解析:(1)由題意可知,從該企業(yè)任取一件這種產(chǎn)品是優(yōu)質(zhì)品的概率的是,所以從該企業(yè)任取兩件這種產(chǎn)品,至少有一件是優(yōu)質(zhì)產(chǎn)品的概率為;
(2)由題意知, 的分布列為
0 | 10 | 20 | 30 | 40 | |
所以的數(shù)學(xué)期望 (元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線關(guān)于直線對稱的直線為,直線與橢圓分別交于點(diǎn)、和、,記直線的斜率為.
(Ⅰ)求的值;
(Ⅱ)當(dāng)變化時,試問直線是否恒過定點(diǎn)? 若恒過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺中, , 分別是, 的中點(diǎn), 平面, 是等邊三角形, , ,.
(1)證明: 平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個交點(diǎn)為, 的周長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:的焦點(diǎn)為F,拋物線C與直線l1:的一個交點(diǎn)為,且(為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(II)不過原點(diǎn)的直線l2與l1垂直,且與拋物線交于不同的兩點(diǎn)A,B,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的最小值的表達(dá)式;
(2)若函數(shù)在上有且只有一個零點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com