【題目】如圖,已知四棱柱的底面是正方形,側(cè)面是矩形,的中點(diǎn),平面平面.

1)證明:平面;

2)判斷二面角是否為直二面角,不用說明理由;

3)求二面角的大小.

【答案】1)見解析;(2)是;(3.

【解析】

1)連接、,平面即為平面,推導(dǎo)出,,,由此能證明平面;

2)二面角是直二面角;

3)以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的大。

1)連接,.

平面即為平面,底面是正方形,.

又平面平面,平面平面平面,

平面,又平面,

側(cè)面是矩形,,

平面,平面,平面

2)二面角為直二面角;

3)由(1)可知,,,,

故以為坐標(biāo)原點(diǎn),方向為軸正方向,為單位長度,建立如下圖所示的空間直角坐標(biāo)系,則,,,

所以,,設(shè)平面的法向量為

,令,則,,則,

由(1)知,平面,所以,是平面的一個法向量,

于是,

由(2)知二面角的平面角為鈍角,所以二面角的大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,,且的最小值為的圖象的相鄰兩條對稱軸之間的距離為,的圖象關(guān)于原點(diǎn)對稱.

(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

(2)在中,角所對的邊分別為,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象與x軸相切,求實(shí)數(shù)a的值;

2)討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】響應(yīng)“文化強(qiáng)國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.

(1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競賽選拔賽.已知成績合格的名參賽選手成績的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.

1)求的值;

2)估計這名參賽選手的平均成績;

3)根據(jù)已有的經(jīng)驗,參加競賽選拔賽的選手能夠進(jìn)入正式競賽比賽的概率為,假設(shè)每名選手能否通過競賽選拔賽相互獨(dú)立,現(xiàn)有名選手進(jìn)入競賽選拔賽,記這名選手在競賽選拔賽中通過的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓,直線與拋物線相切于點(diǎn),且與圓相切于點(diǎn).

1)當(dāng)時,求直線方程與拋物線的方程;

2)設(shè)為拋物線的焦點(diǎn),,的面積分別為,,當(dāng)取得最大值時,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機(jī)選取了名用戶,統(tǒng)計出年齡分布和用戶付費(fèi)金額(金額為整數(shù))情況如下圖.

有聲書公司將付費(fèi)高于元的用戶定義為“愛付費(fèi)用戶”,將年齡在歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有的“年輕用戶”是“愛付費(fèi)用戶”.

(1)完成下面的列聯(lián)表,并據(jù)此資料,能否有的把握認(rèn)為用戶“愛付費(fèi)”與其為“年輕用戶”有關(guān)?

愛付費(fèi)用戶

不愛付費(fèi)用戶

合計

年輕用戶

非年輕用戶

合計

(2)若公司采用分層抽樣方法從“愛付費(fèi)用戶”中隨機(jī)選取人,再從這人中隨機(jī)抽取人進(jìn)行訪談,求抽取的人恰好都是“年輕用戶”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體,點(diǎn),,分別是棱,,的中點(diǎn),動點(diǎn)在線段上運(yùn)動.

1)證明:平面

2)求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】談祥柏先生是我國著名的數(shù)學(xué)科普作家,他寫的《數(shù)學(xué)百草園》、《好玩的數(shù)學(xué)》、《故事中的數(shù)學(xué)》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數(shù)學(xué)》中談老的一篇文章《五分鐘內(nèi)挑出埃及分?jǐn)?shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分?jǐn)?shù)(稱為埃及分?jǐn)?shù)).如用兩個埃及分?jǐn)?shù)的和表示.100個埃及分?jǐn)?shù)中挑出不同的3個,使得它們的和為1,這三個分?jǐn)?shù)是________.(按照從大到小的順序排列)

查看答案和解析>>

同步練習(xí)冊答案