【題目】2019年9月24日國家統(tǒng)計局在慶祝中華人民共和國成立70周年活動新聞中心舉辦新聞發(fā)布會指出,1952年~2018年,我國GDP查679.1億元躍升至90.03萬億元,實際增長174倍;人均GDP從119元提高到6.46萬元,實際增長70倍.全國各族人民,砥礪奮進(jìn),頑強(qiáng)拼搏,實現(xiàn)了經(jīng)濟(jì)社會的跨越式發(fā)展.如圖是全國2010年至2018年GDP總量(萬億元)的折線圖.
注:年份代碼1~9分別對應(yīng)年份2010~2018.
(1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2019年全國GDP的總量.
附注:參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù);
回歸方程中斜率和截距的最小二乘法估計公式分別為,
【答案】(1)可以用線性回歸模型擬合與的關(guān)系,理由見解析;
(2),預(yù)測2019年全國GDP總量約為93.42萬億元.
【解析】
(1)根據(jù)題中所給條件,求出相關(guān)系數(shù),即可確定可用線性回歸模型擬合.
(2)根據(jù)(1)所得結(jié)果,求出回歸方程,再將年對應(yīng)的年份代碼代入方程,即可得2019年全國GDP的總量的預(yù)測值.
解:(1)由折線圖中的數(shù)據(jù)和附注中參考數(shù)據(jù)得,,
,
所以,
因為與的相關(guān)系數(shù)近似為0.997,
說明與的線性相關(guān)程度相當(dāng)高,
從而可以用線性回歸模型擬合與的關(guān)系.
(2)由已知及(1)得,
,
所以,關(guān)于的回歸方程為.
將2019年對應(yīng)的代碼代入回歸方程,
得.
所以預(yù)測2019年全國GDP總量約為93.42萬億元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程,并求出曲線與公共弦所在直線的極坐標(biāo)方程;
(2)若射線與曲線交于兩點,與曲線交于點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)(其中a是實數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設(shè),且有兩個極值點 ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩地生產(chǎn)同一種瓷器,現(xiàn)從兩地的瓷器中隨機(jī)抽取了一共300件統(tǒng)計質(zhì)量指標(biāo)值,得到如圖的兩個統(tǒng)計圖,其中甲地瓷器的質(zhì)量指標(biāo)值在區(qū)間和的頻數(shù)相等.
甲地瓷器質(zhì)量頻率分布直方圖 乙地瓷器質(zhì)量扇形統(tǒng)計圖
(1)求直方圖中的值,并估計甲地瓷器質(zhì)量指標(biāo)值的平均值;(同一組中的數(shù)據(jù)用區(qū)間的中點值作代表)
(2)規(guī)定該種瓷器的質(zhì)量指標(biāo)值不低于125為特等品,且已知樣本中甲地的特等品比乙地的特等品多10個,結(jié)合乙地瓷器質(zhì)量扇形統(tǒng)計圖完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為甲、乙兩地的瓷器質(zhì)量有差異?
物等品 | 非特等品 | 合計 | |
甲地 | |||
乙地 | |||
合計 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六名百米運(yùn)動員參加比賽,甲、乙、丙、丁四名同學(xué)猜測誰跑了第一名.甲猜不是就是;乙猜不是;丙猜不是中任一個;丁猜是中之一,若四名同學(xué)中只有一名同學(xué)猜對,則猜對的是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際羽毛球比賽規(guī)則從2006年5月開始,正式?jīng)Q定實行21分的比賽規(guī)則和每球得分制,并且每次得分者發(fā)球,所有單項的每局獲勝分至少是21分,最高不超過30分,即先到21分的獲勝一方贏得該局比賽,如果雙方比分為時,獲勝的一方需超過對方2分才算取勝,直至雙方比分打成時,那么先到第30分的一方獲勝.在一局比賽中,甲發(fā)球贏球的概率為,甲接發(fā)球贏球的概率為,則在比分為,且甲發(fā)球的情況下,甲以贏下比賽的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移個單位,再將所得圖象的橫坐標(biāo)縮短到原來的一半,縱坐標(biāo)不變,得到新的函數(shù)y=g(x),當(dāng)時,求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P在直線l:y=x-1上,若存在過點P的直線交拋物線于A,B兩點,且|PA|=|AB|,則稱點P為“正點”,那么下列結(jié)論中正確的是( )
A.直線l上的所有點都是“正點”
B.直線l上僅有有限個點是“正點”
C.直線l上的所有點都不是“正點”
D.直線l上有無窮多個點(但不是所有的點)是“正點”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計 | 50 | 50 | 100 |
(1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機(jī)選取3名做深度采訪,求這3名學(xué)生中恰有2名挑同桌的概率;
(2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時是否挑同桌”有關(guān)?
下面的臨界值表供參考:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com