【題目】已知函數(shù), 則: (1)曲線的斜率為的切線方程為__________;
(2)設(shè),記在區(qū)間上的最大值為.當(dāng)最小時,的值為__________.
【答案】與 -3
【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)幾何意義求出切線的斜率,再結(jié)合點斜式求出方程即可
(2)令,結(jié)合導(dǎo)數(shù)求得,再令,則,,結(jié)合絕對值函數(shù)的對稱性,進一步討論參數(shù)與-3的關(guān)系即可求解
(1) 由得,
令,即,得或
又
所以曲線的斜率為的切線方程是與
即與
(2)令.
由得,
令得或/span>
的情況如表:
所以的最小值為,最大值為,可令,則,,此時根據(jù)絕對值函數(shù)的對稱性進行分類討論,
當(dāng)時,即時,如圖:
函數(shù)的對稱軸為,此時;
當(dāng)時,即時,如圖:
,當(dāng)時,;
當(dāng)時,即時,如圖:
,當(dāng)時,;
綜上所述,當(dāng)最小時,的值為-3
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
(1)求證:平面PAB⊥平面CDE;
(2)若AD=CD=2,求點P到平面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A.若“”為假命題,則“”為假命題
B.“”是“”的必要不充分條件
C.命題“若,則”的逆否命題為真命題
D.命題“,”的否定是“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .
(Ⅰ)寫出和的值,并用列舉法寫出集合;
(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;
(Ⅲ)有多少個集合對,滿足,且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB=2a+b.
(1)求角C的大。
(2)若△ABC的面積等于,求ab的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,,平面平面,為等邊三角形,為的中點.
(1)求證:平面平面;
(2)若是的中點,求證:平面,并求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|x+1|>|2﹣x|+1的解集為M,且a,b,c∈M.
(1)比較|a﹣b|與|1﹣ab|的大小,并說明理由;
(2)若,求a2+b2+c2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,則(1)______;(2)如果對,恒成立,那么線段的長度的取值范圍是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com