【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .
(Ⅰ)寫出和的值,并用列舉法寫出集合;
(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;
(Ⅲ)有多少個集合對,滿足,且?
【答案】(1) ,, ,(2)4,(3)128
【解析】試題分析:(Ⅰ)依據(jù)定義直接得到答案;(Ⅱ)根據(jù)題意可知:對于集合,
①且,則;②若且,則.,據(jù)此結(jié)論找出滿足條件的集合,從而求出的最小值.(Ⅲ)由P,QA∪B,且(P△A)△(Q△B)=A△B求出集合P,Q所滿足的條件,進(jìn)而確定集合對(P,Q)的個數(shù).
試題解析:
(Ⅰ) ,, .
(Ⅱ)根據(jù)題意可知:對于集合,
①且,則;
②若且,則.
所以要使的值最小,2,4,8一定屬于集合;1,6,10,16是否屬于不影響的值;集合不能含有之外的元素.
所以當(dāng)為集合{1,6,10,16}的子集與集合{2,4,8}的并集時, 取到最小值4.
(Ⅲ)因?yàn)?/span>,
所以.
由定義可知: .
所以對任意元素,,
.
所以.
所以.
由知: .
所以.
所以.
所以,即.
因?yàn)?/span>,
所以滿足題意的集合對的個數(shù)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為,這兩條曲線在第一象限的交點(diǎn)為, 是以為底邊的等腰三角形.若,記橢圓與雙曲線的離心率分別為,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(diǎn)(t,P)落在圖中的兩條線段上,該股票在30填內(nèi)的日交易量Q(萬股)與時間t(天)的部分?jǐn)?shù)據(jù)如表所示:
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該種股票每股交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時間t(天)的一次函數(shù)關(guān)系式;
(3)用y表示該股票日交易額(萬元),寫出y關(guān)于t的函數(shù)關(guān)系式,并求在這30天中第幾天日交易額最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間D上,若函數(shù)y=f(x)為增函數(shù),而函數(shù) 為減函數(shù),則稱函數(shù)y=f(x)為區(qū)間D上的“弱增”函數(shù).則下列函數(shù)中,在區(qū)間[1,2]上不是“弱增”函數(shù)的為( )
A.
B.
C.g(x)=x2+1
D.g(x)=x2+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線1通過點(diǎn)P(1,3)且與兩坐標(biāo)軸的正半軸交于A、B兩點(diǎn).
(1)直線1與兩坐標(biāo)軸所圍成的三角形面積為6,求直線1的方程;
(2)求OA+OB的最小值;
(3)求PAPB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a∈R).
(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;
(Ⅱ)若過點(diǎn)P(1,4)可作曲線y=f(x)的3條切線,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=﹣ sin(2x+ )+2,求:
(1)f(x)的最小正周期及對稱軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)﹣m+1=0在x∈[0, ]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com