【題目】已知f(x)=﹣ sin(2x+ )+2,求:
(1)f(x)的最小正周期及對稱軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)﹣m+1=0在x∈[0, ]上有解,求實數(shù)m的取值范圍.

【答案】
(1)解:由于f(x)=﹣ sin(2x+ )+2,它的最小正周期為 =π,

令2x+ =kπ+ ,求得x= + ,k∈Z,故函數(shù)f(x)的圖象的對稱軸方程為x= + ,k∈Z


(2)解:令2kπ+ ≤2x+ ≤2kπ+ ,求得 kπ+ ≤x≤kπ+ ,可得函數(shù)f(x)的增區(qū)間為[kπ+ ,kπ+ ],k∈Z
(3)解:若方程f(x)﹣m+1=0在x∈[0, ]上有解,則函數(shù)f(x)的圖象和直線y=m﹣1在x∈[0, ]上有交點.

∵x∈[0, ],∴2x+ ∈[ , ],sin(2x+ )∈[﹣ ,1],f(x)∈[2﹣ , ],

故m﹣1∈[2﹣ , ],∴m∈[3﹣ , ]


【解析】(1)由條件利用正弦函數(shù)的最小正周期、正弦函數(shù)的圖象的對稱性,得出結(jié)論.(2)求出y=sin(2x+ )的減區(qū)間,即為f(x)的單調(diào)遞增區(qū)間,再利用正弦函數(shù)的單調(diào)性得出結(jié)論.(3)由題意可得函數(shù)f(x)的圖象和直線y=m﹣1在x∈[0, ]上有交點,根據(jù)正弦函數(shù)的定義域和值域求出f(x)的值域,可得m的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .

(Ⅰ)寫出的值,并用列舉法寫出集合;

(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;

(Ⅲ)有多少個集合對,滿足,且?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(1)當(dāng)a=﹣4時,求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時,討論方程f(x)=0根的個數(shù).
(3)若a>0,且對任意的x1 , x2∈[1,e],都有 ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來編制個花籃, 個花盆.

(Ⅰ)列出滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點,且角φ的終邊經(jīng)過點P(1,﹣ ),若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( , )內(nèi)有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓G: + =1(b>0)的上、下頂點和右焦點分別為M、N和F,且△MFN的面積為4
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點.以AB為底作等腰三角形,頂點為P(﹣3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】荊州市政府為促進淡水魚養(yǎng)殖業(yè)的發(fā)展,將價格控制在適當(dāng)?shù)姆秶鷥?nèi),決定對淡水魚養(yǎng)殖提供政府補貼.設(shè)淡水魚的市場價格為/千克,政府補貼為/千克.根據(jù)市場調(diào)查,當(dāng)時,淡水魚的市場日供應(yīng)量千克與市場日需求量千克近似滿足關(guān)系;.當(dāng)市場日供應(yīng)量與市場日需求量相等時的市場價格稱為市場平衡價格.

(1)將市場平衡價格表示為政府補貼的函數(shù),并求其定義域;

(2)為使市場平衡價格不高于10/千克,政府補貼至少為每千克多少元?

查看答案和解析>>

同步練習(xí)冊答案