【題目】在平面直角坐標系中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

1)求直線l的普通方程和曲線C的直角坐標方程;

2)若直線l與曲線C相交于A,B兩點.

【答案】1.;(25.

【解析】

1)將t為參數(shù))中的參數(shù)t消去,即可求得直線l的普通方程,再根據(jù)極坐標與直角坐標的互化公式,即可求得曲線C的直角坐標方程;

2)令,得到直線的參數(shù)方程為參數(shù)),代入,結合直線參數(shù)方程中參數(shù)的幾何意義,即可求解.

1)由題意,將t為參數(shù))中的參數(shù)t消去,可得

即直線l的普通方程為

,可得,

又由,代入可得,

所以曲線C的直角坐標方程為.

2)令,則有為參數(shù)).

將其代入方程中,得,其中.

設點A,B對應的參數(shù)分別為,,則,,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an},{bn}中,anbn+n,bn=﹣an+1.

1)證明:數(shù)列{an+3bn}是等差數(shù)列.

2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.恒成立,則當取得最小值時,的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.

1)求曲線、的極坐標方程;

2)射線與曲線,分別交于點,(且點,均異于原點),當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①函數(shù)上單調遞減,在上單調遞增;

②若函數(shù)上有兩個零點,則的取值范圍是;

③當時,函數(shù)的最大值為0;

④函數(shù)上單調遞減;

上述命題正確的是_________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,,O為線段CD的中點,將沿BO折到 的位置,使得,E的中點.

1)求證:;

2)求直線AE與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱中,側面為菱形,,側面為正方形,平面平面.為線段的中點,點在線段上,且.

1)證明:平面平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)處的切線方程;

2)若函數(shù)在定義域上單調增,求的取值范圍;

3)若函數(shù)在定義域上不單調,試判定的零點個數(shù),并給出證明過程.

查看答案和解析>>

同步練習冊答案