函數(shù)f(x)=ex+3x的零點個數(shù)是
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)零點的判斷定理,即可求出函數(shù)f(x)的零點個數(shù).
解答: 解:∵f(x)=ex+3x為增函數(shù),
∵f(0)=1>0,f(-1)=e-1-3<0,
∴在(-1,0)內(nèi)函數(shù)f(x)存在唯一的一個零點,
即零點的個數(shù)為1個,
故答案為:1
點評:本題主要考查函數(shù)零點個數(shù)的判斷,函數(shù)零點的判斷條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,底面ABCD是直角梯形,AD∥BC,∠ADC=90°,AD=2BC=2,CD=
3
,平面PAD⊥底面ABCD,若M為AD的中點,E是棱PC上的點.
(1)求證:平面EBM⊥平面PAD;
(2)若∠MEC=90°,求三棱錐A-BME的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,則ω=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=cosθ
y=sinθ-1
,若以O(shè)為極點,x軸正半軸為極軸,則曲線的極坐標(biāo)可寫為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,
2
x
+
1
y
=2,則x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,集合{a,
b
a
,1}={a2,a+b,0},則a2012+b2013的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{n-
1
n
}的第三項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公比為2的等比數(shù)列{an}的前n項和為Sn,則
S4
S2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,扇形AOB的弧的中點為M,動點C,D分別在線段OA,OB上,且BD=2OC.若OA=2,∠AOB=120°,則
MC
MD
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案