【題目】如圖,⊙O 為△ABC 的外接圓,AM、AT分別為中線和角平分線,過點(diǎn)B 、C 的⊙O的切線相交于點(diǎn)P , 聯(lián)結(jié)AP,與 BC和⊙O分別相交于點(diǎn)D 、E .求證:點(diǎn)T是△AME 的內(nèi)心 .
【答案】見解析
【解析】
先證明 AT是∠MAE的平分線,即證∠BAM=∠CAP .
如圖 ,作CF⊥AB,垂足為F,聯(lián)結(jié)MF.則.
又∠BAC =∠BCP,則.
所以.
又∠AFM=180°-∠BFM=180°-∠FBC=∠ACP ,
所以, △AFM ∽△ACP .則∠BAM=∠CAP .
再證明MD是∠AME 的平分線.
如圖,由于 M是BC的中點(diǎn),所以PO經(jīng)過點(diǎn)M,且OP⊥BC聯(lián)結(jié)OA、OC、OE .
由切割線定理及射影定理,可得.
所以M 、O 、A、E 四點(diǎn)共圓.于是∠OMA =∠OEA =∠OAE =∠PME .
故∠AMD =∠EMD,即點(diǎn) T 是△AME的內(nèi)心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)從區(qū)間內(nèi)任意選取一個(gè)實(shí)數(shù),求的概率;
(2)從區(qū)間內(nèi)任意選取一個(gè)整數(shù),求的概率
【答案】(1) .(2) .
【解析】試題(1)根據(jù)幾何概型概率公式,分別求出滿足不等式的的區(qū)間長度與區(qū)間總長度,求比值即可;(2) 區(qū)間內(nèi)共有個(gè)數(shù),滿足的整數(shù)為共有 個(gè),根據(jù)古典概型概率公式可得結(jié)果.
試題解析: (1)∵,∴,
故由幾何概型可知,所求概率為.
(2)∵,∴,
則在區(qū)間內(nèi)滿足的整數(shù)為5,6,7,8,9,共有5個(gè),
故由古典概型可知,所求概率為.
【方法點(diǎn)睛】本題題主要考查古典概型及“區(qū)間型”的幾何概型,屬于中檔題. 解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,區(qū)間型,求與區(qū)間有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題題的總區(qū)間 以及事件的區(qū)間;幾何概型問題還有以下幾點(diǎn)容易造成失分,在備考時(shí)要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯(cuò)誤;(2)基本裏件對(duì)應(yīng)的區(qū)域測度把握不準(zhǔn)導(dǎo)致錯(cuò)誤 ;(3)利用幾何概型的概率公式時(shí) , 忽視驗(yàn)證事件是否等可能性導(dǎo)致錯(cuò)誤.
【題型】解答題
【結(jié)束】
18
【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過的(-2,16).
(1)求函數(shù)f(x)的解析式;
(2)若f(2m+5)<f(3m+3),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , a1= ,公比q>0,S1+a1 , S3+a3 , S2+a2成等差數(shù)列.
(1)求an;
(2)設(shè)bn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)滿足:對(duì)y=f(x)圖象上任意點(diǎn)P(x1 , f(x1)),總存在點(diǎn)P′(x2 , f(x2))也在y=f(x)圖象上,使得x1x2+f(x1)f(x2)=0成立,稱函數(shù)y=f(x)是“特殊對(duì)點(diǎn)函數(shù)”,給出下列五個(gè)函數(shù):
①y=x﹣1;
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y= .
其中是“特殊對(duì)點(diǎn)函數(shù)”的序號(hào)是(寫出所有正確的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx+cos2x,x∈R.
(1)把函數(shù)f(x)的圖象向右平移 個(gè)單位,得到函數(shù)g(x)的圖象,求g(x)在[0, ]上的最大值;
(2)在△ABC中,角A,B,C對(duì)應(yīng)的三邊分別為a,b,c,b= ,f( )=1,S△ABC=3 ,求a和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,△PBC為正三角形,AB⊥平面PBC,AB∥CD,AB=DC, .
(1)求證:AE∥平面PBC;
(2)求證:AE⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三2班有48名學(xué)生進(jìn)行了一場投籃測試,其中男生28人,女生20人.為了了解其投籃成績,甲、乙兩人分別對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~48號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
(Ⅰ)從甲抽取的樣本數(shù)據(jù)中任取兩名同學(xué)的投籃成績,記“抽到投籃成績優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望;
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是
A. 恒有⊥
B. 異面直線與不可能垂直
C. 恒有平面⊥平面
D. 動(dòng)點(diǎn)在平面上的射影在線段上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一個(gè)對(duì)稱中心為,其圖像上相鄰兩個(gè)最高點(diǎn)間的距離為.
(1)求函數(shù)的解析式;
(2)用“五點(diǎn)作圖法”在給定的坐標(biāo)系中作出函數(shù)在一個(gè)周期內(nèi)的圖像,并寫出函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com