【題目】如圖,在三棱臺ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大。
【答案】
(1)證明:連接B1N,B1C,
設(shè)B1C與NC1交于點(diǎn)G,在三棱臺ABC﹣A1B1C1中,
AB=2A1B1,則BC=2B1C1,
而N是BC的中點(diǎn),B1C1∥BC,
則B1C1 NC,所以四邊形B1C1CN是平行四邊形,G是B1C的中點(diǎn),
在△AB1C中,M是AC的中點(diǎn),則MG∥AB1,
又AB1平面C1MN,MG平面C1MN,
所以AB1∥平面C1MN
(2)解:由CC1⊥平面ABC,可得A1M⊥平面ABC,
而AB⊥BC,AB=BC,則MB⊥AC,
所以MA,MB,MA1兩兩垂直,
故以點(diǎn)M為坐標(biāo)原點(diǎn),MA,MB,MA1所在的直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系.
設(shè)AB=2,則A1B1=CC1=1,AC=2 ,AM= ,
B(0, ,0),C(﹣ ,0,0),C1(﹣ ,0,1),N(﹣ , ,0),
則平面ACC1A1的一個法向量為 =(0,1,0),
設(shè)平面C1MN的法向量為 =(x,y,z),
則 ,
取x=1,則 =(1,1, ),
cos< >= ,
由圖形得得二面角C﹣MC1﹣N為銳角,
所以二面角C﹣MC1﹣N的大小為60°.
【解析】(1)連接B1N,B1C,設(shè)B1C與NC1交于點(diǎn)G,推導(dǎo)出四邊形B1C1CN是平行四邊形,從而MG∥AB1 , 由此能證明AB1∥平面C1MN.(2)以點(diǎn)M為坐標(biāo)原點(diǎn),MA,MB,MA1所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣MC1﹣N的大。
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項公式;
(3)設(shè)有m項的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
問數(shù)列{bn}最多有幾項?并求出這些項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項公式為an=f( )(n∈N),則此數(shù)列前2017項的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,將四邊形沿對角線折成四面.使平面平面,則下列結(jié)論正確的是( ).
A. B.
C. 與平面所成的角為 D. 四面體的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(Ⅱ)若Q為曲線C上的動點(diǎn),求PQ的中點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,人們對餐飲服務(wù)行業(yè)的要求也越來越高,由于工作繁忙無法抽出時間來享受美味,這樣網(wǎng)上外賣訂餐應(yīng)運(yùn)而生.若某商家的一款外賣便當(dāng)每月的銷售量(單位:千盒)與銷售價格(單位:元/盒)滿足關(guān)系式其中,為常數(shù),已知銷售價格為14元/盒時,每月可售出21千盒.
(1)求的值;
(2)假設(shè)該款便當(dāng)?shù)氖澄锊牧稀T工工資、外賣配送費(fèi)等所有成本折合為每盒12元(只考慮銷售出的便當(dāng)盒數(shù)),試確定銷售價格的值,使該店每月銷售便當(dāng)所獲得的利潤最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1, F(x)=求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com