已知函數(shù)f(x)=-2x+1,求f[f(x)].
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:計(jì)算題
分析:函數(shù)f(x)的形式是一次函數(shù),代入等式f[f(x)]=-2f(x)+1,直接求出結(jié)果.
解答: 解:
∵f(x)=-2x+1,
∴f[f(x)]=-2f(x)+1=-2(-2x+1)+1=4x-1.
故f[f(x)]=4x-1.
點(diǎn)評(píng):本題考查函數(shù)的解析式的常規(guī)求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為4的半圓形鐵皮內(nèi)剪取一個(gè)內(nèi)接矩形ABCD,如圖(B,C兩點(diǎn)在直徑上,A,D兩點(diǎn)在半圓周上),以邊AB為母線,矩形ABCD為側(cè)面圍成一個(gè)圓柱,當(dāng)圓柱側(cè)面積最大時(shí),該圓柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-sin2x
cosx

(Ⅰ)若f(x)>0,求x的取值范圍;
(Ⅱ)設(shè)α是第四象限的角,且tanα=-
4
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(
1
2
x-
π
4
).x∈R.
(1)列表并畫出函數(shù)f(x)在長度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;
(2)將函數(shù)y=sinx的圖象作怎樣的變換可得到f(x)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,b}(b>1),函數(shù)f(x)=
1
2
(x-1)2+1,當(dāng)x∈A時(shí),f(x)∈A,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知可由數(shù)列{an}構(gòu)造一列向量:
βn
=(2an,an+1-2n+1),n∈Z+.又向量
m
=(1,3),
p
=(3a1,7-a2),且向量
m
p
垂直,以及向量
m
βn
平行(n∈Z+).
(1)試確定a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,則總有a+b>c.由正弦定理得sinA+sinB>sinC.由導(dǎo)數(shù)公式:(sinx)′=cosx,可以得到結(jié)論:對(duì)任意△ABC有cosA+cosB>cosC.上述結(jié)論是否正確?如果不正確,請(qǐng)舉出反例,并指出推導(dǎo)過程中的錯(cuò)誤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
π
4
-α)=-
4
5
,sin(
4
+β)=
5
13
,且α∈(
π
4
,
4
),β∈(0,
π
4
),求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,E為AB的中點(diǎn),F(xiàn)為CC1的中點(diǎn).
(1)證明:BF∥平面ECD1;
(2)求二面角D1-EC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案