【題目】2014年推出一種新型家用轎車,購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽車油費共0.7萬元,
汽車維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費用均比上一年增加0.2萬元
(1)設該輛轎車使用n年的總費用(包括購買費用,保險費,養(yǎng)路費,汽車費及維修費)為f(n),求f(n)的表達式.
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?

【答案】
(1)解:由題意得:每年的維修費構成一等差數(shù)列,n年的維修總費用為

(萬元)

所以f(n)=14.4+0.7n+(0.1n2﹣0.1n)

=0.1n2+0.6n+14.4(萬元)


(2)解:該輛轎車使用n年的年平均費用為

0.1n+0.6+

=3(萬元)

當且僅當 時取等號,此時n=12

答:這種汽車使用12年報廢最合算


【解析】(1)由已知中某種汽車購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽油費共0.7萬元,汽車的維修費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,…,依等差數(shù)列逐年遞增,根據(jù)等差數(shù)列前n項和公式,即可得到f(n)的表達式;(2)由(1)中使用n年該車的總費用,得到n年平均費用表達式,根據(jù)基本不等式,計算出平均費用最小時的n值,進而得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|.
(1)若f(x)≤m的解集為{x|﹣1≤x≤5},求實數(shù)a,m的值.
(2)當a=2且0≤t<2時,解關于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當x∈[0, ]時,f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對稱軸方程;
(2)設函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果把直角三角形的三邊都增加同樣的長度,則這個新的三角形的形狀為(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.由增加的長度決定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,點B是其下頂點,過點B的直線交橢圓C于另一點A(A點在軸下方),且線段AB的中點E在直線上.

(1)求直線AB的方程;

(2)若點P為橢圓C上異于A、B的動點,且直線AP,BP分別交直線于點M、N,證明:OM·ON為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分16分)已知函數(shù),

1)若函數(shù)上單調遞增,求實數(shù)的取值范圍;

2)若直線是函數(shù)圖象的切線,求的最小值;

3)當時,若的圖象有兩個交點,求證: .(取,取,取

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值為3,最小正周期為π.
(1)求函數(shù)f(x)的單調遞增區(qū)間.
(2)若f(θ)= ,求sin(4θ+ )的值.
(3)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個零點,在滿足上述條件的[a,b]中,求b﹣a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分14分

如圖,在多面體中,四邊形是菱形,相交于點,,平面平面,,點的中點.

1求證:直線平面;

2求證:直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C對邊分別為a、b、c,sinA+sinB=2sinC,a=2b.
(1)證明:△ABC為鈍角三角形;
(2)若SABC= ,求c.

查看答案和解析>>

同步練習冊答案