【題目】(本題滿分14分)
如圖,在多面體中,四邊形是菱形,相交于點,,,平面平面,,點為的中點.
(1)求證:直線平面;
(2)求證:直線平面.
【答案】(1)詳見解析(2)詳見解析
【解析】
試題分析:(1)∵四邊形是菱形,∴點是的中點,∵點為的中點,由三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得直線平面.
(2)一方面∵四邊形是菱形,∴,另一方面∵ ,點為的中點, ∴,由面面垂直性質(zhì)定理得平面,從而,又可證四邊形為平行四邊形,即,所以,最后由線面垂直判定定理得平面.
試題解析:證明(1)∵四邊形是菱形,,∴點是的中點,
∵點為的中點 ∴, 3分
又∵平面,平面,∴直線平面. 7分
(2)∵ ,點為的中點, ∴,
∵平面平面,平面平面,
平面, ∴平面, 9/span>分
∵平面 ∴,
∵,,∴,
∴四邊形為平行四邊形, ∴, 11分
∵,,∴, ∵四邊形是菱形,∴,
∵,,,在平面內(nèi),
∴平面. 14分
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)某學校為了支持生物課程基地研究植物生長,計劃利用學?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長為(m),三塊種植植物的矩形區(qū)域的總面積為(m2).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2014年推出一種新型家用轎車,購買時費用為14.4萬元,每年應交付保險費、養(yǎng)路費及汽車油費共0.7萬元,
汽車維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費用均比上一年增加0.2萬元
(1)設(shè)該輛轎車使用n年的總費用(包括購買費用,保險費,養(yǎng)路費,汽車費及維修費)為f(n),求f(n)的表達式.
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx﹣ax)有兩個極值點,則實數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0, )
C.(0,1)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),
第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有一名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,PA=PD= ,E是BC中點,點Q在側(cè)棱PC上.
(1)求證:AD⊥PB;
(2)若Q是PC中點,求二面角E﹣DQ﹣C的余弦值;
(3)若 ,當PA∥平面DEQ時,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位“準笑星”在“信陽笑星”選拔賽中,5位評委給出的評分情況如圖所示,記甲、乙兩人的平均得分分別為 、 ,記甲、乙兩人得分的標準差分別為s1、s2 , 則下列判斷正確的是( )
A.< ,s1<s2
B.< ,s1>s2
C.> ,s1<s2
D.> ,s1>s2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1、F2分別為雙曲線 (a>0,b>0)的左、右焦點,若雙曲線左支上存在一點P使得 =8a,則雙曲線的離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有紅、黃、藍三種顏色小旗各2面,將他們排成3行2列,要求每行及每列的顏色均互不相同,則不同的排列方法共有( )
A. 12種 B. 18種 C. 24種 D. 36種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com