【題目】如圖,在四棱錐中,平面,點(diǎn)中點(diǎn),底面為梯形,,.

(1)證明:平面;

(2)求平面與平面所成的銳二面角的大小.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

1)取中點(diǎn), 連接,.利用中位線性質(zhì),結(jié)合平行線的傳遞性,可證出MECD平行且相等,從而得到四邊形是平行四邊形,可得CMDE,最后根據(jù)線面平行的判定定理,證出CM∥平面PAD;

2)建立空間坐標(biāo)系,求得兩個(gè)面的法向量,利用向量夾角公式求得二面角的大小.

1)如圖,取中點(diǎn),連接.

中點(diǎn),

,.

,

,.

∴四邊形為平行四邊形.

.

平面,平面,

平面.

2)取中點(diǎn),由已知為正方形,又平面,故以為原點(diǎn),,,,,軸建立如圖所示直角坐標(biāo)系,

設(shè),則,,,

,,設(shè)平面的法向量,則有,,解得.

同理可求得平面的法向量,

,即平面與平面所成銳二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒   次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說(shuō)法錯(cuò)誤的是( )

A. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為

B. 無(wú)論點(diǎn)上怎么移動(dòng),都有

C. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有相交于一點(diǎn),記為點(diǎn),且

D. 無(wú)論點(diǎn)上怎么移動(dòng),異面直線所成角都不可能是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的兩個(gè)焦點(diǎn)為,并且經(jīng)過(guò)點(diǎn).

1)求雙曲線的方程;

2)過(guò)點(diǎn)的直線與雙曲線有且僅有一個(gè)公共點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,,,,的面積為

1)求橢圓的方程;

2)過(guò)右焦點(diǎn)作與軸不重合的直線交橢圓兩點(diǎn),連接分別交直線于,兩點(diǎn),若直線的斜率分別為,,試問(wèn):是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)令函數(shù),若時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)R.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.

1)求拋物線的方程;

2)設(shè)直線與拋物線交于兩點(diǎn),且,是弦中點(diǎn),過(guò)作平行于軸的直線交拋物線于點(diǎn),得到,再分別過(guò)弦、的中點(diǎn)作平行于軸的直線依次交拋物線于點(diǎn),得到,按此方法繼續(xù)下去,解決下列問(wèn)題:

①求證:

②計(jì)算的面積;

③根據(jù)的面積的計(jì)算結(jié)果,寫出、的面積,請(qǐng)?jiān)O(shè)計(jì)一種求拋物線與線段所圍成封閉圖形面積的方法,并求此封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓的上頂點(diǎn),,且的面積為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),,求當(dāng)的面積取得最大值時(shí),直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案