【題目】已知橢圓:的左、右焦點(diǎn)分別為、,是橢圓的上頂點(diǎn),,且的面積為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是橢圓上的兩個(gè)動點(diǎn),,求當(dāng)的面積取得最大值時(shí),直線的方程.
【答案】(1);(2)
【解析】
(1)根據(jù)三角形的面積公式,以及等邊三角形的性質(zhì)即可求出b,c,再根據(jù)a2=b2+c2,即可得到.(2)設(shè),,聯(lián)立方程組根據(jù)根與系數(shù)的關(guān)系,利用MA⊥NA,得到﹣1,即可得出.
(1)由已知可得,的面積為..
∴.故橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),,依題意直線的斜率存在,故設(shè)的方程為,
聯(lián)立得,
∴,即,
且,,
又 ,
.∵是橢圓的上頂點(diǎn),故,
∵,∴,即,
∴,
∴,,或,
∵直線不過點(diǎn),∴,直線過定點(diǎn),
的面積,
令.則,函數(shù),,
∴在單調(diào)遞減,故.
∴的面積取得最大值時(shí),,直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,點(diǎn)為中點(diǎn),底面為梯形,,,.
(1)證明:平面;
(2)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽測試得學(xué)生中隨機(jī)抽取60名學(xué)生,將其成績(百分制均為整數(shù))分成6段,,…,后得到如下部分頻率直方分布圖,觀察圖形得信息,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率;
(2)若用樣本估計(jì)總體,已知該校參加知識競賽一共有300人,請估計(jì)本次考試成績不低于80分的人數(shù);
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線與直線平行.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點(diǎn)分別是,,點(diǎn)為的上頂點(diǎn),點(diǎn)在上,,且.
(1)求的方程;
(2)已知過原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線過且與橢圓交于,兩點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將標(biāo)號為1,2,…,20的20張卡片放入下列表格中,一個(gè)格放入一張卡片.把每列標(biāo)號最小的卡片選出,將這些卡片中標(biāo)號最大的數(shù)設(shè)為a;把每行標(biāo)號最大的卡片選出,將這些卡片中標(biāo)號最小的數(shù)設(shè)為b.
甲同學(xué)認(rèn)為a有可能比b大,乙同學(xué)認(rèn)為a和b有可能相等.那么甲乙兩位同學(xué)中說法正確的同學(xué)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)
(1)證明:;
(2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足,其中數(shù)列的前項(xiàng)和,
(1)若數(shù)列是首項(xiàng)為.公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)若,求證:數(shù)列滿足,并寫出的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),求證中任意一項(xiàng)總可以表示成該數(shù)列其它兩項(xiàng)之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com