【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性.

【答案】(Ⅰ);(Ⅱ)討論見解析

【解析】

(Ⅰ)利用導(dǎo)數(shù)的幾何意義求解即可;

(Ⅱ)分類討論參數(shù)的范圍,利用導(dǎo)數(shù)證明單調(diào)性即可.

解:(Ⅰ)當(dāng)時(shí),

所以

所以

所以曲線在點(diǎn)處的切線方程為

(Ⅱ)因?yàn)?/span>,

所以

1)當(dāng)時(shí),因?yàn)?/span>

,

,

所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

2)當(dāng)時(shí),令,得

當(dāng)時(shí),

,得;

,得

所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

②當(dāng)時(shí),

;

所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

③當(dāng)時(shí),因?yàn)?/span>

所以在區(qū)間內(nèi)單調(diào)遞增.

④當(dāng)時(shí),由

所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

綜上可知,當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減;

當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減;

當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減;

當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增;

當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)令函數(shù),若時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:①命題“若,”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對(duì)于命題使得,則,均有.其中,真命題的個(gè)數(shù)是 ( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績(jī)統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績(jī)以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績(jī)低于87分的為未達(dá)標(biāo),分?jǐn)?shù)不低于87分的為達(dá)標(biāo)”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學(xué)生中從測(cè)試成績(jī)介于80~90之間的學(xué)生中任選2人,求至少有1達(dá)標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓的上頂點(diǎn),,且的面積為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),,求當(dāng)的面積取得最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓方程為,過點(diǎn)的直線l交橢圓于點(diǎn)AB,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:

1)動(dòng)點(diǎn)P的軌跡方程;

2的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017高考新課標(biāo)Ⅲ19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC

(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有兩個(gè)車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[55,65),[65,75),[75,85),[85,95]分組).

分組

頻數(shù)

[55,65)

2

[65,75)

4

[75,85)

10

[85,95]

4

合計(jì)

20

第一車間樣本頻數(shù)分布表

(Ⅰ)分別估計(jì)兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);

(Ⅱ)分別估計(jì)兩車間工人生產(chǎn)時(shí)間的平均值,并推測(cè)哪個(gè)車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)從第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中隨機(jī)抽取2人,求抽取的2人中,至少1人生產(chǎn)時(shí)間小于65min的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案