14.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入( 。
A.n≤8?B.n>8?C.n≤7?D.n>7?

分析 分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸入S的值,條件框內(nèi)的語(yǔ)句是決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到答案.

解答 解:模擬程序的運(yùn)行,可得
S=0,n=1,a=3
執(zhí)行循環(huán)體,S=3,a=5
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=2,S=8,a=7
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=3,S=15,a=9
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=4,S=24,a=11
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=5,S=35,a=13
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=6,S=48,a=15
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=7,S=63,a=17
不滿(mǎn)足條件,執(zhí)行循環(huán)體,n=8,S=80,a=19
由題意,此時(shí)滿(mǎn)足條件,退出循環(huán),輸出的S結(jié)果為80,
則判斷框內(nèi)應(yīng)填入n>7?
故選:D.

點(diǎn)評(píng) 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某小組有7人,現(xiàn)在從任選3人相互調(diào)整位置,其余4人位置不變,則不同調(diào)整方案有(  )種.
A.35B.70C.210D.105

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某貨運(yùn)公司規(guī)定,從甲城到乙城的計(jì)價(jià)標(biāo)準(zhǔn)是:40噸以?xún)?nèi)100元(含40噸),超出40噸的部分4元/噸.
(1)寫(xiě)出運(yùn)費(fèi)y(元)與貨物重量x(噸)的函數(shù)解析式,并畫(huà)出圖象;
(2)若某人托運(yùn)貨物60噸,求其應(yīng)付的運(yùn)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xoy中,己知定點(diǎn)F(l,0),點(diǎn)P在y軸上運(yùn)動(dòng),點(diǎn)M在x軸上,點(diǎn)N 為平面內(nèi)的動(dòng)點(diǎn),且滿(mǎn)足可$\overline{PM}•\overline{PF}=0,\overline{PM}+\overline{PN}=0$.求動(dòng)點(diǎn)N的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.復(fù)數(shù)z滿(mǎn)足(z+2i)i=1+i,則z=( 。
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖是某個(gè)幾何體的三視圖,其中正視圖為正方形,俯視圖是腰長(zhǎng)為2的等腰直角三角形,則該幾何體外接球的直徑為( 。
A.2B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={x|x2-3x+2≤0},B={x|1<2x<4},則A∩B=( 。
A.{x|1≤x≤2}B.{x|1<x≤2}C.{x|1≤x<2}D.{x|0≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.不等式|x-1|<3的解集為(-2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且$a=bcosC+\sqrt{3}csinB$.
(Ⅰ)求B的大小;
(Ⅱ)若$a=\sqrt{3}$,c=2,AC邊的中點(diǎn)為D,求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案