【題目】若曲線C1:x2+y2﹣2x=0與曲線C2:mx2﹣xy+mx=0有三個不同的公共點,則實數m的取值范圍是( )
A.(﹣ , )
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0, )
【答案】D
【解析】解:根據題意,曲線C2:mx2﹣xy+mx=0,即x(mx﹣y+m)=0,
則曲線C2表示兩條直線:x=0,y=m(x+1),
曲線C1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,為圓心(1,0),半徑為1的圓;
當m=0時,曲線C2表示兩條直線:x=0與y=0,與曲線C1:只有2個交點,不符合題意,
當m≠0時,
直線x=0與曲線C1只有一個交點,
則直線y=m(x+1)與曲線C1:x2+y2﹣2x=0有2個交點,即直線y=m(x+1)與圓(x﹣1)2+y2=1相交,
則有 <1,
解可得:﹣ <m< ,且m≠0;
綜合可得:m的取值范圍是(﹣ ,0)∪(0, );
故選:D.
科目:高中數學 來源: 題型:
【題目】若函數y=ksin(kx+φ)(k>0,|φ|< )與函數y=kx﹣k2+6的部分圖象如圖所示,則函數f(x)=sin(kx﹣φ)+cos(kx﹣φ)圖象的一條對稱軸的方程可以為( )
A.x=﹣
B.x=
C.x=
D.x=﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過不重合的A(m2+2,m2﹣3),B(3﹣m﹣m2 , 2m)兩點的直線l傾斜角為45°,則m的取值為( )
A.m=﹣1
B.m=﹣2
C.m=﹣1或2
D.m=l或m=﹣2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點P(﹣5,a)作圓x2+y2﹣2ax+2y﹣1=0的兩條切線,切點分別為M(x1 , y1),N(x2 , y2),且 + =0,則實數a的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+1滿足f(﹣1)=0,且x∈R時,f(x)的值域為[0,+∞).
(1)求f(x)的表達式;
(2)設函數g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]時是單調函數,求實數k的取值范圍;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:以點 為圓心的圓與x軸交于點O,A,與y軸交于點O、B,其中O為原點,
(1)求證:△OAB的面積為定值;
(2)設直線y=﹣2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com