(本小題滿分14分)已知,若函數(shù)在區(qū)間
的最大值為,最小值為,令.
(1)求的函數(shù)表達(dá)式;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并求出的最小值.

解:(1)的圖像為開口向上的拋物線,且對(duì)稱
軸為     ………2分
有最小值.      ………3分
當(dāng),即時(shí),有最大值;………5分
當(dāng),即時(shí),有最大值;………7分
 
  ………8分
(3)設(shè),則,
上是減函數(shù).………10分
設(shè),
上是增函數(shù).………12分
.∴當(dāng)時(shí),有最小值!14分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理數(shù))(12分)某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克
(Ⅰ) 求的值;
(Ⅱ) 若該商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題11分)如圖,矩形ABCD中,AB=6,BC=2,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長(zhǎng)線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖象與x軸有兩個(gè)不同的公共點(diǎn),且,當(dāng)時(shí),恒有.
(1)當(dāng)時(shí),求不等式的解集;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形的面積為8,且,求a的值;
(3)若,且對(duì)所有恒成立,求正實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某地方政府為地方電子工業(yè)發(fā)展,決定對(duì)某一進(jìn)口電子產(chǎn)品征收附加稅。已知這種電子產(chǎn)品國(guó)內(nèi)市場(chǎng)零售價(jià)為每件250元,每年可銷售40萬(wàn)件,若政府征收附加稅率為t元時(shí),則每年減少y萬(wàn)件。
(1)收入表示為征收附加稅率的函數(shù);
(2)在該項(xiàng)經(jīng)營(yíng)中每年征收附加稅金不低于600萬(wàn)元,那么附加稅率應(yīng)控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

曲線f(x)=x3+x﹣2在p0處的切線平行于直線y=4x﹣1,則p0的坐標(biāo)為( )

A.(1,0)B.(2,8)
C.(1,0)或(﹣1,﹣4)D.(2,8)或(﹣1,﹣4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)曲線在點(diǎn)處的切線與直線垂直,則(   )

A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)
(1)設(shè),若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),在區(qū)間上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上單調(diào),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案