分析 (1)令a=b=1得f(1)=2f(1),f(1)=0.
(2)(2)設(shè)x1>x2>0,f(x1)-f(x2)=f($\frac{{x}_{1}}{{x}_{2}}$)>0可證.
解答 解:(1)令a=b=1得f(1)=2f(1),∴f(1)=0.,∴f(1)=0.
(2)設(shè)x1>x2>0,則f(x1)=f($\frac{{x}_{1}}{{x}_{2}}•{x}_{2}$)=f($\frac{{x}_{1}}{{x}_{2}}$)+f(x2)
∴f(x1)-f(x2)=f($\frac{{x}_{1}}{{x}_{2}}$),∵x1>x2>0,∴$\frac{{x}_{1}}{{x}_{2}}>1$⇒f($\frac{{x}_{1}}{{x}_{2}}$)>0
即f(x1)-f(x2)>0.
∴f(x)在(0,+∞)上是增函數(shù).
點評 本題考查了抽象函數(shù)單調(diào)性的判定及賦值法,屬于基礎(chǔ)題.,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2x+1與g(x)=$\frac{2{x}^{2}+x}{x}$ | B. | y=x-1與y=$\frac{{x}^{2}-1}{x+1}$ | ||
C. | y=$\frac{{x}^{2}-9}{x-3}$與y=x+3 | D. | f(x)=1與g(x)=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥0 | B. | a≤0 | C. | 0≤a≤4 | D. | a≤0或a≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com