【題目】下列關(guān)于命題的說法錯誤的是(

A.命題x23x+20,則x2”的逆否命題為x≠2,則x23x+2≠0”

B.a2”函數(shù)fx)=ax在區(qū)間(﹣+∞)上為增函數(shù)的充分不必要條件

C.命題xR,使得x2+x+10”的否定是:xR,均有x2+x+1≥0”

D.f )=0,則yfx)的極值點為真命題

【答案】D

【解析】

A,利用四種命題的逆否關(guān)系判斷;B,根據(jù)指數(shù)函數(shù)的單調(diào)性即可判斷;C,根據(jù)特稱命題的否定判斷;D,根據(jù)極值點的定義判斷.

對于A,根據(jù)逆否命題的定義,命題,則的逆否命題為,則,故正確;

對于B,,可得函數(shù)在區(qū)間上為增函數(shù),若函數(shù)在區(qū)間上為增函數(shù),則,函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件,故正確;

對于C,根據(jù)特稱命題的否定是全稱命題,命題,使得x2+x+1<0”的否定是:均有,故正確;

對于Df )=0,則yfx)的極值點為假命題,比如:中,,但不是的極值點,錯誤,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)表示不大于實數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個解,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1的圓心在坐標(biāo)原點O,且恰好與直線相切.

()求圓C1的標(biāo)準(zhǔn)方程;

()設(shè)點A為圓上一動點,AN垂直于x軸于點N,若動點Q滿足

(其中m為非零常數(shù)),試求動點Q的軌跡方程;

()()的結(jié)論下,當(dāng)m時,得到動點Q的軌跡為曲線C,與l1垂直的直線l與曲線C交于B,D兩點,求OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》中有如下問題:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”其意思為:“今有白米一百八十石,甲、乙、丙三人來分,他們分得的白米數(shù)構(gòu)成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”請問:乙應(yīng)該分得( )白米

A. 96石B. 78石C. 60石D. 42石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的方程xa在(1,+∞)上有實根;命題q:方程1表示的曲線是焦點在x軸上的橢圓.

1)若p是真命題,求a的取值范圍;

2)若pq是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,動點在線段上運動,且有.

(1)若,求證:

(2)若二面角的平面角的余弦值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

討論的單調(diào)性;

的極值點,且曲線在兩點 處的切線相互平行,這兩條切線在軸上的截距分別為,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列、滿足 (N*),則稱為數(shù)列的“偏差數(shù)列”.

(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說明理由;

(2)若無窮數(shù)列是各項均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;

(3)設(shè)為數(shù)列的“偏差數(shù)列”,,,若對任意恒成立,求實數(shù)M的最小值.

查看答案和解析>>

同步練習(xí)冊答案