【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)由于雙曲線焦點在軸上,所以,解得;(2)不等式恒成立,等價于判別式為非正數(shù),解得.若或真、且假,則這兩個命題一真一假.分別求出假真和真假時的取值范圍,取并集得到的取值范圍.
試題解析:
(1)因為方程表示焦點在軸上的雙曲線.
∴,得;∴當時,為真命題,………………………3分
(2)∵不等式恒成立,∴,∴,
∴當時,為真命題............................6分
∵為假命題,為真命題,∴一真一假;.......................7分
①當真假,②當假真無解
綜上,的取值范圍是............................10分
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,平行于軸的兩條直線,分別交于,兩點,交的準線于,兩點.
(1)若在線段上,是的中點,證明:;
(2)若△的面積是△的面積的兩倍,求中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,離心率,且橢圓經(jīng)過點,過橢圓的左焦點且不與坐標軸垂直的直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)設(shè)線段的垂直平分線與軸交于點,求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:直線與圓有兩個交點;命題: .
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題, 為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標原點,過點作的平行線交曲線于兩個不同的點.
(1)求曲線的方程;
(2)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點,為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝),進入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為,乙隊獲勝的概率為,假設(shè)每場比賽的結(jié)果互相獨立,現(xiàn)已賽完兩場,乙隊以2:0暫時領(lǐng)先.
(1)求甲隊獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時兩隊比賽的場數(shù)為隨機變量,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點橫坐標為時,為正三角形.
(1)求的方程;
(2)若直線,且和 有且只有一個公共點.
①證明直線過定點,并求出定點坐標;
②的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com