【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實數(shù)的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)由于雙曲線焦點在軸上,所以,解得2不等式恒成立,等價于判別式為非正數(shù),解得.若真、假,則這兩個命題一真一假.分別求出真和假時的取值范圍,取并集得到的取值范圍.

試題解析:

(1)因為方程表示焦點在軸上的雙曲線.

,得;時,為真命題,………………………3分

(2)不等式恒成立,,

時,為真命題............................6分

為假命題,為真命題,一真一假;.......................7分

,無解

綜上,的取值范圍是............................10分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,平行于軸的兩條直線,分別交,兩點,的準線于,兩點

(1)若在線段的中點,證明

(2)若的面積是△的面積的兩倍,中點的軌跡方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,離心率,且橢圓經(jīng)過點,過橢圓的左焦點且不與坐標軸垂直的直線交橢圓,兩點

(1)求橢圓的方程;

(2)設(shè)線段的垂直平分線與軸交于點求△的面積的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:直線與圓有兩個交點;命題: .

1)若為真命題,求實數(shù)的取值范圍;

2)若為真命題, 為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標原點,過點的平行線交曲線兩個不同的點.

(1)求曲線的方程;

(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(3)記的面積為,的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.

1求橢圓的標準方程;

2已知點,為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.

(1)求拋物線的方程;

(2)過點作直線交拋物線于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝),進入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為,乙隊獲勝的概率為假設(shè)每場比賽的結(jié)果互相獨立,現(xiàn)已賽完兩場,乙隊以2:0暫時領(lǐng)先.

(1)求甲隊獲得這次比賽勝利的概率;

(2)設(shè)比賽結(jié)束時兩隊比賽的場數(shù)為隨機變量,求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有當點橫坐標為時,為正三角形

(1)求的方程;

(2)若直線,且 有且只有一個公共點

證明直線過定點,并求出定點坐標;

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案