(附加題,10分)已知函數(shù),數(shù)列滿足,且
(1)試探究數(shù)列是否是等比數(shù)列?(5分)
(2)試證明.(5分)

(1)數(shù)列是首項(xiàng)為,公比為的等比數(shù)列. (2)證明:見(jiàn)解析。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,滿足,,且,成等差數(shù)列.
(1)求,的值;
(2) 是等比數(shù)列
(3)證明:對(duì)一切正整數(shù),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列滿足,,數(shù)列滿足
(1)求的通項(xiàng)公式;(5分)
(2)數(shù)列滿足,為數(shù)列的前項(xiàng)和.求;(5分)
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有 的值;若不存在,請(qǐng)說(shuō)明理由.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)在直線上.數(shù)列{bn}滿足
,前9項(xiàng)和為153.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列{cn}的前n和為Tn,求使不等式對(duì)一切
都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知數(shù)列是公差不為零的等差數(shù)列,=1,且,,成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;    (Ⅱ)求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
等比數(shù)列{}的前項(xiàng)和為,已知對(duì)任意的,點(diǎn)均在函數(shù)均為常數(shù))的圖像上.     
(1)求的值;     
(2)當(dāng)時(shí),記,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分,計(jì)入總分)
已知數(shù)列滿足:
⑴求;   
⑵當(dāng)時(shí),求的關(guān)系式,并求數(shù)列中偶數(shù)項(xiàng)的通項(xiàng)公式;
⑶求數(shù)列前100項(xiàng)中所有奇數(shù)項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足:, 其中為實(shí)數(shù),為正整數(shù).
(Ⅰ)對(duì)任意實(shí)數(shù),證明數(shù)列不是等比數(shù)列;
(Ⅱ)對(duì)于給定的實(shí)數(shù),試求數(shù)列的前項(xiàng)和
(Ⅲ)設(shè),是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有成立? 若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和為,若,則(   )

A.3 B.4 C.5 D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案