【題目】已知函數(shù)f(x)= sin(2x+ )+sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)g(x)對任意x∈R,有g(x)=f(x+ ),求函數(shù)g(x)在[﹣ , ]上的值域.

【答案】
(1)解:f(x)= sin(2x+ )+sin2x

=

= sin2x+ cos2x+sin2x

= sin2x+

= sin2x+1﹣ = sin2x+ ,

∴f(x)的最小正周期T= ;


(2)解:∵函數(shù)g(x)對任意x∈R,有g(x)=f(x+ ),

∴g(x)= sin2(x+ )+ = sin(2x+ )+ ,

當x∈[﹣ ]時,則2x+ ,

≤sin(2x+ )≤1,即 × ≤g(x) ,解得 ≤g(x)≤1.

綜上所述,函數(shù)g(x)在[﹣ , ]上的值域為:[ ,1].


【解析】(1)利用兩角和的正弦函數(shù)公式及二倍角公式化簡函數(shù)f(x),再由周期公式計算得答案;(2)由已知條件求出g(x)= sin(2x+ )+ ,當x∈[﹣ , ]時,則2x+ ,由正弦函數(shù)的值域進一步求出函數(shù)g(x)在[﹣ , ]上的值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(1)求直線yx被圓x2+(y-2)2=4截得的弦長;

(2)已知圓,求過點的圓的切線方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正項等比數(shù)列{an}和正項等差數(shù)列{bn}中,已知a1 , a2017的等比中項與b1 , b2017的等差中項相等,且 + ≤1,當a1009取得最小值時,等差數(shù)列{bn}的公差d的取值集合為(
A.{d|d≥ }
B.{d|0<d< }
C.{ }
D.{d|d≥ }

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P( , )在橢圓E: + =1(a>b>0)上,F(xiàn)為右焦點,PF垂直于x軸,A,B,C,D為橢圓上四個動點,且AC,BD交于原點O.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設A(x1 , y1),B(x2 , y2),滿足 = ,判斷kAB+kBC的值是否為定值,若是,求出此定值,并求出四邊形ABCD面積的最大值,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ﹣2sinθ.
(1)求C的參數(shù)方程;
(2)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 )上的值域為[﹣1,2],則θ=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓E: + =1(a>0)的焦點在x軸上.
(Ⅰ)若橢圓E的離心率e= a,求橢圓E的方程;
(Ⅱ)設F1、F2分別是橢圓E的左、右焦點,P為直線x+y=2 與橢圓E的一個公共點,直線F2P交y軸于點Q,連結F1P,問當a變化時, 的夾角是否為定值,若是定值,求出該定值,若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=cos2x圖象向左平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[﹣ , ]上單調(diào)遞減,且函數(shù)g(x)的最大負零點在區(qū)間(﹣ ,0)上,則φ的取值范圍是(
A.[ , ]
B.[ ,
C.( , ]
D.[

查看答案和解析>>

同步練習冊答案