【題目】已知點(diǎn)P( , )在橢圓E: + =1(a>b>0)上,F(xiàn)為右焦點(diǎn),PF垂直于x軸,A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD交于原點(diǎn)O.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2),滿(mǎn)足 = ,判斷kAB+kBC的值是否為定值,若是,求出此定值,并求出四邊形ABCD面積的最大值,否則請(qǐng)說(shuō)明理由.
【答案】解:(Ⅰ)由題意可知:PF垂直于x軸,則c= , = ,即a=2b2 ,
a2﹣b2=c2=3,
則a=2,b=1,
∴橢圓的標(biāo)準(zhǔn)方程: ;
(Ⅱ)∵ = ,4y1y2=x1x2 ,
若直線(xiàn)AB的斜率不存在(或AB的斜率為0時(shí)),不滿(mǎn)足4y1y2=x1x2;
直線(xiàn)AB的斜率存在且不為0時(shí),設(shè)直線(xiàn)方程為y=kx+m,A(x1 , y1),B(x2 , y2).
聯(lián)立 ,得(1+4k2)x2+8kmx+4(m2﹣1)=0.
△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(4k2﹣m2+1)>0,①
x1+x2=﹣ ,x1x2= .
∵4y1y2=x1x2 , 又y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2 ,
∴(4k2﹣1)x1x2+4km(x1+x2)+4m2=0,
即(4k2﹣1) +4km(﹣ )+4m2=0.
整理得:k=± .
∵A、B、C、D的位置可以輪換,
∴AB、BC的斜率一個(gè)是 ,另一個(gè)就是﹣ .
∴kAB+kBC= ﹣ =0,是定值.
不妨設(shè)kAB=﹣ ,則x1+x2=2m,x1x2=2(m2﹣1).
設(shè)原點(diǎn)到直線(xiàn)AB的距離為d,則S△AOB= |AB|d= |x1﹣x2|
= = ≤1.
當(dāng)m2=1時(shí)滿(mǎn)足①取等號(hào).
∴S四邊形ABCD=4S△AOB≤4,即四邊形ABCD面積的最大值為4.
∴四邊形ABCD面積的最大值為4.
【解析】(Ⅰ)由題意可知a=2b2 , a2﹣b2=c2=3,即可求得a和b的值,求得橢圓方程;(Ⅱ)由4y1y2=x1x2 , 當(dāng)直線(xiàn)AB的斜率存在且不為0時(shí),設(shè)直線(xiàn)方程為y=kx+m,代入橢圓方程,利用根與系數(shù)的關(guān)系求得A,B的橫坐標(biāo)的和與積,結(jié)合4y1y2=x1x2 , 求得k,把三角形AOB的面積化為關(guān)于m的函數(shù),利用基本不等式求其最值,進(jìn)一步得到四邊形ABCD面積的最大值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列{an}滿(mǎn)足:a1=1,an+1=ran+r(n∈N* , 實(shí)數(shù)r是非零常數(shù)),則“r=1”是“數(shù)列{an}是等差數(shù)列”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓的方程;
(2)若圓與直線(xiàn)交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種畫(huà)橢圓的工具如圖1所示.O是滑槽AB的中點(diǎn),短桿ON可繞O轉(zhuǎn)動(dòng),長(zhǎng)桿MN通過(guò)N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動(dòng),且DN=ON=1,MN=3,當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)N繞O轉(zhuǎn)動(dòng),M處的筆尖畫(huà)出的橢圓記為C,以O(shè)為原點(diǎn),AB所在的直線(xiàn)為x軸建立如圖2所示的平面直角坐標(biāo)系.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線(xiàn)l與兩定直線(xiàn)l1:x﹣2y=0和l2:x+2y=0分別交于P,Q兩點(diǎn).若直線(xiàn)l總與橢圓C有且只有一個(gè)公共點(diǎn),試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+a)(a∈R)有唯一的零點(diǎn)x0 , 則( )
A.﹣1<x0<﹣
B.﹣ <x0<﹣
C.﹣ <x0<0
D.0<x0<
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin(2x+ )+sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)g(x)對(duì)任意x∈R,有g(shù)(x)=f(x+ ),求函數(shù)g(x)在[﹣ , ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問(wèn),米幾何?”如圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( )
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記f(n)為最接近 (n∈N*)的整數(shù),如f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,…,若 + + +…+ =4054,則正整數(shù)m的值為( )
A.2016×2017
B.20172
C.2017×2018
D.2018×2019
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a∈R),曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)x+y+1=0垂直. (Ⅰ)試比較20162017與20172016的大小,并說(shuō)明理由;
(Ⅱ)若函數(shù)g(x)=f(x)﹣k有兩個(gè)不同的零點(diǎn)x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com